906
Views
0
CrossRef citations to date
0
Altmetric
Urology

Management of hypertension addressing hyperuricaemia: introduction of nano-based approaches

ORCID Icon, & ORCID Icon
Article: 2352022 | Received 30 Jan 2024, Accepted 22 Apr 2024, Published online: 16 May 2024

References

  • Gonsalez SR, Cortês AL, Silva R, et al. Acute kidney injury overview: from basic findings to new prevention and therapy strategies. Pharmacol Ther. 2019;200:1–20. doi: 10.1016/j.pharmthera.2019.04.001.
  • Bagga HS, Chi T, Miller J, et al. New insights into the pathogenesis of renal calculi. Urol Clin North Am. 2013;40(1):1–12. doi: 10.1016/j.ucl.2012.09.006.
  • Devarajan A. Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci. 2018;132(6):615–626. doi: 10.1042/CS20171574.
  • Gambaro G, Croppi E, Coe F, et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol. 2016;29(6):715–734. doi: 10.1007/s40620-016-0329-y.
  • Low RK, Stoller ML. Uric acid–related nephrolithiasis. Urol Clin North Am. 1997;24(1):135–148. doi: 10.1016/s0094-0143(05)70359-1.
  • Shekarriz B, Stoller ML. Uric acid nephrolithiasis: current concepts and controversies. J Urol. 2002;168(4 Pt 1):1307–1314. doi: 10.1016/S0022-5347(05)64439-4.
  • Abate N, Chandalia M, Cabo-Chan AV, et al. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 2004;65(2):386–392. doi: 10.1111/j.1523-1755.2004.00386.x.
  • de Oliveira EP, Burini RC. High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr. 2012;4(1):12. doi: 10.1186/1758-5996-4-12.
  • Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14. doi: 10.1016/j.ijcard.2015.08.109.
  • Borghi C, Agabiti-Rosei E, Johnson RJ, et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med. 2020;80:1–11. doi: 10.1016/j.ejim.2020.07.006.
  • Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis. 2018;71(6):851–865. doi: 10.1053/j.ajkd.2017.12.009.
  • Bruce SP. Febuxostat: a selective xanthine oxidase inhibitor for the treatment of hyperuricemia and gout. Ann Pharmacother. 2006;40(12):2187–2194. doi: 10.1345/aph.1H121.
  • Suzuki S, Yoshihisa A, Yokokawa T, et al. Comparison between febuxostat and allopurinol uric acid-lowering therapy in patients with chronic heart failure and hyperuricemia: a multicenter randomized controlled trial. J Int Med Res. 2021;49(12):3000605211062770. 03000605211062770. doi: 10.1177/03000605211062770.
  • Hu M, Tomlinson B. Febuxostat in the management of hyperuricemia and chronic gout: a review. Ther Clin Risk Manag. 2008;4(6):1209–1220.
  • Beara-Lasic L, Pillinger MH, Goldfarb DS. Advances in the management of gout: critical appraisal of febuxostat in the control of hyperuricemia. Int J Nephrol Renovasc Dis. 2010;3:1–10. doi: 10.2147/ijnrd.s5563.
  • Borgi L, McMullan C, Wohlhueter A, et al. Effect of uric acid–lowering agents on endothelial function. Hypertension. 2017;69(2):243–248. doi: 10.1161/HYPERTENSIONAHA.116.08488.
  • Su H-y, Yang C, Liang D, et al. Research advances in the mechanisms of hyperuricemia-induced renal injury. Biomed Res Int. 2020;2020:5817348. doi: 10.1155/2020/5817348.
  • Cicero AFG, Fogacci F, Cincione RI, et al. Clinical effects of xanthine oxidase inhibitors in hyperuricemic patients. Med Princ Pract. 2021;30(2):122–130. doi: 10.1159/000512178.
  • Girigoswami K, Pallavi P, Girigoswami A. Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum. Drug Deliv. 2023;30(1):2284684. doi: 10.1080/10717544.2023.2284684.
  • Mary Lazer L, Sadhasivam B, Palaniyandi K, et al. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol. 2018;107(Pt B):1988–1998. doi: 10.1016/j.ijbiomac.2017.10.064.
  • Vedhanayagam M, Nidhin M, Duraipandy N, et al. Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application. Int J Biol Macromol. 2017;99:655–664. doi: 10.1016/j.ijbiomac.2017.02.102.
  • Draviana HT, Fitriannisa I, Khafid M, et al. Size and charge effects of metal nanoclusters on antibacterial mechanisms. J Nanobiotechnol. 2023;21(1):428. doi: 10.1186/s12951-023-02208-3.
  • Pourmadadi M, Mahdi Eshaghi M, Ostovar S, et al. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: drug delivery applications. J Drug Deliv Sci Technol. 2023;82:104357. doi: 10.1016/j.jddst.2023.104357.
  • Thirumalai A, Girigoswami K, Pallavi P, et al. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer. 2023;110(12):1288–1300. doi: 10.1016/j.bulcan.2023.08.009.
  • Thirumalai A, Harini K, Pallavi P, et al. Bile salt-mediated surface-engineered bilosome-nanocarriers for delivering therapeutics. Nanomed J. 2024;11(1):1–12.
  • Dragicevic N, Predic-Atkinson J, Nikolic B, et al. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv. 2024;21(2):279–307. doi: 10.1080/17425247.2024.2318460.
  • Pemula G, Anand AV, Karthick H, et al. Nanostructured proteins for delivering drugs to diseased tissues. Bioinspired Biomim Nanobiomaterials. 2023;12(3):115–129.
  • Shurfa MK, Girigoswami A, Sakthi Devi R, et al. Combinatorial effect of doxorubicin entrapped in alginate-chitosan hybrid polymer and cerium oxide nanocomposites on skin cancer management in mice. J Pharm Sci. 2023;112(11):2891–2900. doi: 10.1016/j.xphs.2023.08.014.
  • Naahidi S, Jafari M, Edalat F, et al. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166(2):182–194. doi: 10.1016/j.jconrel.2012.12.013.
  • Otto DP, Otto A, de Villiers MM. Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery. Expert Opin Drug Deliv. 2015;12(5):763–777. doi: 10.1517/17425247.2015.988135.
  • Day Richard O, Kamel B, Kannangara Diluk RW, et al. Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin Sci. 2016;130(23):2167–2180. doi: 10.1042/CS20160010.
  • Roman YM. The role of uric acid in human health: insights from the uricase gene. J Pers Med [Internet]. 2023;13(9):1409. doi: 10.3390/jpm13091409.
  • de Abreu MFS, Wegermann CA, Ceroullo MS, et al. Ten years milestones in xanthine oxidase inhibitors discovery: febuxostat-based inhibitors trends, bifunctional derivatives, and automatized screening assays. Organics [Internet]. 2022;3(4):380–414. doi: 10.3390/org3040026.
  • Maia LB, Pereira V, Mira L, et al. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry. 2015;54(3):685–710. doi: 10.1021/bi500987w.
  • Agarwal A, Banerjee A, Banerjee UC. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol. 2011;31(3):264–280. doi: 10.3109/07388551.2010.527823.
  • Nishino T, Okamoto K. The role of the [2Fe–2S] cluster centers in xanthine oxidoreductase. J Inorg Biochem. 2000;82(1–4):43–49. doi: 10.1016/s0162-0134(00)00165-3.
  • Harris CM, Sanders SA, Massey V. Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. J Biol Chem. 1999;274(8):4561–4569. doi: 10.1074/jbc.274.8.4561.
  • Ribeiro PMG, Fernandes HS, Maia LB, et al. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg Chem Front. 2021;8(2):405–416. doi: 10.1039/D0QI01029D.
  • Ichida K, Amaya Y, Okamoto K, et al. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci [Internet]. 2012;13(11):15475–15495. doi: 10.3390/ijms131115475.
  • Cerqueira N, Pakhira B, Sarkar S. Theoretical studies on mechanisms of some Mo enzymes. J Biol Inorg Chem. 2015;20(2):323–335. doi: 10.1007/s00775-015-1237-7.
  • Unno T, Sugimoto A, Kakuda T. Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by a hypoxanthine and xanthine oxidase system. J Sci Food Agric. 2000;80(5):601–606. doi: 10.1002/(SICI)1097-0010(200004)80:5<601::AID-JSFA581>3.0.CO;2-O.
  • Hille R, Hall J, Basu P. The mononuclear molybdenum enzymes. Chem Rev. 2014;114(7):3963–4038. doi: 10.1021/cr400443z.
  • Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(Pt 3):589–606. doi: 10.1113/jphysiol.2003.055913.
  • Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002;33(6):774–797. doi: 10.1016/s0891-5849(02)00956-5.
  • Srinivasan S, Kalaiselvi P, Sakthivel R, et al. Uric acid: an abettor or protector in calcium oxalate urolithiasis? Biochemical study in stone formers. Clin Chim Acta. 2005;353(1–2):45–51. doi: 10.1016/j.cccn.2004.09.024.
  • Li L, Zhang Y, Zeng C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am J Transl Res. 2020;12(7):3167–3181.
  • Vadakedath S, Kandi V. Probable potential role of urate transporter genes in the development of metabolic disorders. Cureus. 2018;10(3):e2382. doi: 10.7759/cureus.2382.
  • Jin M, Yang F, Yang I, et al. Uric acid, hyperuricemia and vascular diseases. Front Biosci (Landmark Ed). 2012;17(2):656–669. doi: 10.2741/3950.
  • Ridker PM, Wilson PWF, Grundy SM. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation. 2004;109(23):2818–2825. doi: 10.1161/01.CIR.0000132467.45278.59.
  • Ravindran S, Munusamy S. Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J Cell Physiol. 2022;237(2):1182–1205. doi: 10.1002/jcp.30621.
  • Sekine M, Okamoto K, Pai EF, et al. Allopurinol and oxypurinol differ in their strength and mechanisms of inhibition of xanthine oxidoreductase. J Biol Chem. 2023;299(9):105189. doi: 10.1016/j.jbc.2023.105189.
  • Torres RJ, Prior C, Puig JG. Efficacy and safety of allopurinol in patients with hypoxanthine-guanine phosphoribosyltransferase deficiency. Metabolism. 2007;56(9):1179–1186. doi: 10.1016/j.metabol.2007.04.013.
  • Maghsoud Y, Dong C, Cisneros GA. Investigation of the inhibition mechanism of xanthine oxidoreductase by oxipurinol: a computational study. J Chem Inf Model. 2023;63(13):4190–4206. doi: 10.1021/acs.jcim.3c00624.
  • Pál P, Nivorozhkin A, Csaba S. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58(1):87.
  • Stocker SL, Williams KM, McLachlan AJ, et al. Pharmacokinetic and pharmacodynamic interaction between allopurinol and probenecid in healthy subjects. Clin Pharmacokinet. 2008;47(2):111–118. doi: 10.2165/00003088-200847020-00004.
  • Day RO, Graham GG, Hicks M, et al. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin Pharmacokinet. 2007;46(8):623–644. doi: 10.2165/00003088-200746080-00001.
  • Kumar R, Joshi G, Kler H, et al. Toward an understanding of structural insights of xanthine and aldehyde oxidases: an overview of their inhibitors and role in various diseases. Med Res Rev. 2018;38(4):1073–1125. doi: 10.1002/med.21457.
  • Cantor JR, Abu-Remaileh M, Kanarek N, et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell. 2017;169(2):258–272. e17. doi: 10.1016/j.cell.2017.03.023.
  • Kamatani N, Jinnah HA, Hennekam RCM, et al. 6—Purine and pyrimidine metabolism. In: Pyeritz RE, Korf BR, Grody WW, editors. Emery and rimoin’s principles and practice of medical genetics and genomics. 7th ed. London, United Kingdom: Academic Press; 2021. p. 183–234.
  • Sugamura K, Keaney JF. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51(5):978–992. doi: 10.1016/j.freeradbiomed.2011.05.004.
  • van der Pol KH, Wever KE, Verbakel M, et al. Allopurinol to reduce cardiovascular morbidity and mortality: a systematic review and meta-analysis. PLoS One. 2021;16(12):e0260844. doi: 10.1371/journal.pone.0260844.
  • Gois PHF, Souza ERM. Pharmacotherapy for hyperuricaemia in hypertensive patients. Cochrane Database Syst Rev. 2020;9(9):Cd008652. doi: 10.1002/14651858.CD008652.pub4.
  • Badve SV, Pascoe EM, Tiku A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020;382(26):2504–2513. doi: 10.1056/NEJMoa1915833.
  • Mackenzie IS, Hawkey CJ, Ford I, et al. Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial. Lancet. 2022;400(10359):1195–1205. doi: 10.1016/S0140-6736(22)01657-9.
  • ElShagea HN, ElKasabgy NA, Fahmy RH, et al. Freeze-Dried Self-Nanoemulsifying Self-Nanosuspension (SNESNS): a new approach for the preparation of a highly drug-loaded dosage form. AAPS PharmSciTech. 2019;20(7):258. doi: 10.1208/s12249-019-1472-2.
  • Mukoyoshi M, Nishimura S, Hoshide S, et al. In vitro drug–drug interaction studies with febuxostat, a novel non-purine selective inhibitor of xanthine oxidase: plasma protein binding, identification of metabolic enzymes and cytochrome P450 inhibition. Xenobiotica. 2008;38(5):496–510. doi: 10.1080/00498250801956350.
  • Love BL, Barrons R, Veverka A, et al. Urate-Lowering therapy for gout: focus on febuxostat. Pharmacotherapy: J Hum Pharmacol Drug Ther. 2010;30(6):594–608. doi: 10.1592/phco.30.6.594.
  • Kamel B, Graham GG, Stocker SL, et al. A pharmacokinetic-pharmacodynamic study of a single dose of febuxostat in healthy subjects. Br J Clin Pharmacol. 2020;86(12):2486–2496. doi: 10.1111/bcp.14357.
  • Ernst ME, Fravel MA. Febuxostat: a selective xanthine-oxidase/xanthine-dehydrogenase inhibitor for the management of hyperuricemia in adults with gout. Clin Ther. 2009;31(11):2503–2518. doi: 10.1016/j.clinthera.2009.11.033.
  • Strilchuk L, Fogacci F, Cicero AF. Safety and tolerability of available urate-lowering drugs: a critical review. Expert Opin Drug Saf. 2019;18(4):261–271. doi: 10.1080/14740338.2019.1594771.
  • O’Dell JR, Brophy MT, Pillinger MH, et al. Comparative effectiveness of allopurinol and febuxostat in gout management. NEJM Evid. 2022;1(3):EVIDoa2100028. doi: 10.1056/evidoa2100028.
  • Zhang F, Liu Z, Jiang L, et al. A randomized, double-Blind, non-Inferiority study of febuxostat versus allopurinol in hyperuricemic Chinese subjects with or without gout. Rheumatol Ther. 2019;6(4):543–557. doi: 10.1007/s40744-019-00173-8.
  • Peng Y-L, Tain Y-L, Lee C-T, et al. Comparison of uric acid reduction and renal outcomes of febuxostat vs allopurinol in patients with chronic kidney disease. Sci Rep. 2020;10(1):10734. doi: 10.1038/s41598-020-67026-1.
  • Pawar A, Desai RJ, Liu J, et al. Updated assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol. J Am Heart Assoc. 2021;10(7):e020045. doi: 10.1161/JAHA.120.020045.
  • Kim H, Baek CH, Chang JW, et al. Febuxostat, a novel inhibitor of xanthine oxidase, reduces ER stress through upregulation of SIRT1-AMPK-HO-1/thioredoxin expression. Clin Exp Nephrol. 2020;24(3):205–215. doi: 10.1007/s10157-019-01804-8.
  • Nomura J, Kobayashi T, So A, et al. Febuxostat, a xanthine oxidoreductase inhibitor, decreases NLRP3-dependent inflammation in macrophages by activating the purine salvage pathway and restoring cellular bioenergetics. Sci Rep. 2019;9(1):17314. doi: 10.1038/s41598-019-53965-x.
  • Amirshahrokhi K. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflammatory cytokines, and oxidative stress in mice. Int Immunopharmacol. 2019;76:105884. doi: 10.1016/j.intimp.2019.105884.
  • Odake K, Tsujii M, Iino T, et al. Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model. Free Radic Biol Med. 2021;177:238–246. doi: 10.1016/j.freeradbiomed.2021.10.033.
  • Ashtar M, Tenshin H, Teramachi J, et al. The roles of ROS generation in RANKL-Induced osteoclastogenesis: suppressive effects of febuxostat. Cancers [Internet]. 2020;12(4):929. doi: 10.3390/cancers12040929.
  • Higa Y, Hiasa M, Tenshin H, et al. The xanthine oxidase inhibitor febuxostat suppresses adipogenesis and activates Nrf2. Antioxidants [Internet]. 2023;12(1):133. doi: 10.3390/antiox12010133.
  • Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, et al. Febuxostat alleviates arsenic Trioxide-Induced renal injury in rats: insights on the crosstalk between NLRP3/TLR4, sirt-1/NF-κB/TGF-β signaling pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol. 2023;216:115794. doi: 10.1016/j.bcp.2023.115794.
  • Zhang C, Tang L, Zhang Y, et al. Febuxostat, a xanthine oxidase inhibitor, regulated long noncoding RNAs and protected the brain after intracerebral hemorrhage. NeuroReport. 2023;34(14):703–712. doi: 10.1097/WNR.0000000000001945.
  • Yan W, Zhang Y, Hu L, et al. Febuxostat inhibits MPP+-induced inflammatory response through inhibiting the JNK/NF-κB pathway in astrocytes. Neurotox Res. 2021;39(3):566–574. doi: 10.1007/s12640-020-00316-8.
  • Lanaspa MA, Andres-Hernando A, Kuwabara M. Uric acid and hypertension. Hypertens Res. 2020;43(8):832–834. doi: 10.1038/s41440-020-0481-6.
  • Kuwabara M, Niwa K, Nishi Y, et al. Relationship between serum uric acid levels and hypertension among Japanese individuals not treated for hyperuricemia and hypertension. Hypertens Res. 2014;37(8):785–789. doi: 10.1038/hr.2014.75.
  • Kuwabara M, Hisatome I, Niwa K, et al. Uric acid is a strong risk marker for developing hypertension from prehypertension. Hypertension. 2018;71(1):78–86. doi: 10.1161/HYPERTENSIONAHA.117.10370.
  • Bove M, Cicero AFG, Borghi C. The effect of xanthine oxidase inhibitors on blood pressure and renal function. Curr Hypertens Rep. 2017;19(12):95. doi: 10.1007/s11906-017-0793-3.
  • Kuwabara M, Kanbay M, Hisatome I. Uric acid and hypertension because of arterial stiffness. Hypertension. 2018;72(3):582–584. doi: 10.1161/HYPERTENSIONAHA.118.11496.
  • Dikalov SI, Ungvari Z. Role of mitochondrial oxidative stress in hypertension. Am J Physiol Heart Circ Physiol. 2013;305(10):H1417–H1427. doi: 10.1152/ajpheart.00089.2013.
  • Zhang B, Duan M, Long B, et al. Urate transport capacity of glucose transporter 9 and urate transporter 1 in cartilage chondrocytes. Mol Med Rep. 2019;20(2):1645–1654.
  • Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res. 2017;121(2):162–180. doi: 10.1161/CIRCRESAHA.117.306458.
  • Lee T-S, Lu T-M, Chen C-H, et al. Hyperuricemia induces endothelial dysfunction and accelerates atherosclerosis by disturbing the asymmetric dimethylarginine/dimethylarginine dimethylaminotransferase 2 pathway. Redox Biol. 2021;46:102108. doi: 10.1016/j.redox.2021.102108.
  • Wang A, Tian X, Wu S, et al. Metabolic factors mediate the association between serum uric acid to serum creatinine ratio and cardiovascular disease. J Am Heart Assoc. 2021;10(23):e023054. doi: 10.1161/JAHA.121.023054.
  • Tian X, Zuo Y, Chen S, et al. Associations between changes in serum uric acid and the risk of myocardial infarction. Int J Cardiol. 2020;314:25–31. doi: 10.1016/j.ijcard.2020.03.083.
  • Maloberti A, Mengozzi A, Russo E, et al. The results of the URRAH (Uric Acid Right for Heart Health) project: a focus on hyperuricemia in relation to cardiovascular and kidney disease and its role in metabolic dysregulation. High Blood Press Cardiovasc Prev. 2023;30(5):411–425. doi: 10.1007/s40292-023-00602-4.
  • Maloberti A, Giannattasio C, Bombelli M, et al. Hyperuricemia and risk of cardiovascular outcomes: the experience of the URRAH (Uric Acid Right for Heart Health) project. High Blood Press Cardiovasc Prev. 2020;27(2):121–128. doi: 10.1007/s40292-020-00368-z.
  • Russo E, Viazzi F, Pontremoli R, et al. Association of uric acid with kidney function and albuminuria: the Uric Acid Right for heArt Hhealth (URRAH) project. J Nephrol. 2022;35(1):211–221. doi: 10.1007/s40620-021-00985-4.
  • Casiglia E, Tikhonoff V, Virdis A, et al. Serum uric acid/serum creatinine ratio as a predictor of cardiovascular events. Detection of prognostic cardiovascular cut-off values. J Hypertens. 2023;41(1):180–186. doi: 10.1097/HJH.0000000000003319.
  • Scheepers LEJM, Wei F-F, Stolarz-Skrzypek K, et al. Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: a population study. J Hypertens. 2016;34(11):2147–2154. doi: 10.1097/HJH.0000000000001077.
  • Miah R, Fariha KA, Sony SA, et al. Association of serum xanthine oxidase levels with hypertension: a study on Bangladeshi adults. Sci Rep. 2022;12(1):21727. doi: 10.1038/s41598-022-26341-5.
  • Viel EC, Benkirane K, Javeshghani D, et al. Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295(1):H281–H288. doi: 10.1152/ajpheart.00304.2008.
  • Boban M, Kocic G, Radenkovic S, et al. Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. Ren Fail. 2014;36(4):613–618. doi: 10.3109/0886022X.2014.882240.
  • Jankov RP, Kantores C, Pan J, et al. Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L233–L245. doi: 10.1152/ajplung.00166.2007.
  • Furuhashi M, Higashiura Y, Koyama M, et al. Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication. Hypertens Res. 2021;44(9):1213–1220. doi: 10.1038/s41440-021-00679-1.
  • Kurajoh M, Fukumoto S, Yoshida S, et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci Rep. 2021;11(1):7378. doi: 10.1038/s41598-021-86962-0.
  • Muraya N, Kadowaki D, Miyamura S, et al. Benzbromarone attenuates oxidative stress in angiotensin II- and Salt-Induced hypertensive model rats. Oxid Med Cell Longev. 2018;2018:7635274–7635278. doi: 10.1155/2018/7635274.
  • Yun L, Yu X, Xu R. Uric acid/superoxide dismutase can predict progression of gestational hypertension to preeclampsia. Front Cardiovasc Med. 2023;10:1148376. doi: 10.3389/fcvm.2023.1148376.
  • Trapé AA, Jacomini AM, Muniz JJ, et al. The relationship between training status, blood pressure and uric acid in adults and elderly. BMC Cardiovasc Disord. 2013;13(1):44. doi: 10.1186/1471-2261-13-44.
  • Tsukimori K, Yoshitomi T, Morokuma S, et al. Serum uric acid levels correlate with plasma hydrogen peroxide and protein carbonyl levels in preeclampsia. Am J Hypertens. 2008;21(12):1343–1346. doi: 10.1038/ajh.2008.289.
  • Zhang J, Zheng R, Li H, et al. Serum uric acid and incident atrial fibrillation: a systematic review and dose–response meta-analysis. Clin Exp Pharmacol Physiol. 2020;47(11):1774–1782. doi: 10.1111/1440-1681.13374.
  • Kawasoe S, Kubozono T, Yoshifuku S, et al. Uric acid level and prevalence of atrial fibrillation in a Japanese general population of 285,882. Circ J. 2016;80(12):2453–2459. doi: 10.1253/circj.CJ-16-0766.
  • Ding M, Viet NN, Gigante B, et al. Elevated uric acid is associated with new‐onset atrial fibrillation: results from the Swedish AMORIS cohort. J Am Heart Assoc. 2023;12(3):e027089. doi: 10.1161/JAHA.122.027089.
  • Deng Y, Liu F, Yang X, et al. The key role of uric acid in oxidative stress, inflammation, fibrosis, apoptosis, and immunity in the pathogenesis of atrial fibrillation. Front Cardiovasc Med. 2021;8:641136. doi: 10.3389/fcvm.2021.641136.
  • Perez-Ruiz F, Dalbeth N, Bardin T. A review of uric acid, crystal deposition disease, and gout. Adv Ther. 2015;32(1):31–41. doi: 10.1007/s12325-014-0175-z.
  • Johnson RJ, Sanchez Lozada LG, Lanaspa MA, et al. Uric acid and chronic kidney disease: still more to do. Kidney Int Rep. 2023;8(2):229–239. doi: 10.1016/j.ekir.2022.11.016.
  • Singh JA, Cleveland JD. Comparative effectiveness of allopurinol versus febuxostat for preventing incident dementia in older adults: a propensity-matched analysis. Arthritis Res Ther. 2018;20(1):167. doi: 10.1186/s13075-018-1663-3.
  • Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediators Inflamm. 2016;2016:8603115–8603164. doi: 10.1155/2016/8603164.
  • Sandoo A, van Zanten JJ, Metsios GS, et al. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4(1):302–312. doi: 10.2174/1874192401004010302.
  • Grover-Páez F, Zavalza-Gómez AB. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract. 2009;84(1):1–10. doi: 10.1016/j.diabres.2008.12.013.
  • Chen C, Lü JM, Yao Q. Hyperuricemia-Related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview. Med Sci Monit. 2016;22:2501–2512. doi: 10.12659/msm.899852.
  • Pallavi P, Harini K, Alshehri S, et al. From synthetic route of silica nanoparticles to theranostic applications. Processes. 2022;10(12):2595. doi: 10.3390/pr10122595.
  • Bhoopathy J, Vedakumari Sathyaraj W, Yesudhason BV, et al. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds—preparation, characterisation, and evaluation. Artif Cells Nanomed Biotechnol. 2024;52(1):35–45. doi: 10.1080/21691401.2023.2293784.
  • Girigoswami K, Pallavi P, Girigoswami A. Targeting cancer stem cells by nanoenabled drug delivery. In: Pathak S, Banerjee A, editors. Cancer stem cells: new horizons in cancer therapies. Singapore: Springer Singapore; 2020. p. 313–337.
  • Vedakumari SW, Prabu P, Jancy SJV, et al. Radiopaque fibrin nanocomplex as a promising tool for X-ray ­imaging applications. Int J Biol Macromol. 2022;200:285–292. doi: 10.1016/j.ijbiomac.2021.12.164.
  • Gowtham P, Girigoswami K, Pallavi P, et al. Alginate-Derivative encapsulated carbon coated Manganese-Ferrite nanodots for multimodal medical imaging. Pharmaceutics. 2022;14(12):2550. doi: 10.3390/pharmaceutics14122550.
  • Paramita P, Subramaniam VD, Murugesan R, et al. Evaluation of potential anti‐cancer activity of cationic liposomal nanoformulated lycopodium clavatum in colon cancer cells. IET Nanobiotechnol. 2018;12(6):727–732. doi: 10.1049/iet-nbt.2017.0106.
  • Jessy Mercy D, Girigoswami K, Girigoswami A. A mini review on biosensor advancements-emphasis on quantum dots. Results Chem. 2024;7:101271. doi: 10.1016/j.rechem.2023.101271.
  • Bhatt S, Sharma JB, Kamboj R, et al. Design and optimization of febuxostat-loaded nano lipid carriers using full factorial design. Turk J Pharm Sci. 2021;18(1):61–67. doi: 10.4274/tjps.galenos.2019.32656.
  • Gurumukhi VC, Sonawane VP, Tapadiya GG, et al. Quality-by-design based fabrication of febuxostat-loaded nanoemulsion: statistical optimization, characterizations, permeability, and bioavailability studies. Heliyon. 2023;9(4):e15404. doi: 10.1016/j.heliyon.2023.e15404.
  • Al-Amodi YA, Hosny KM, Alharbi WS, et al. Investigating the potential of transmucosal delivery of febuxostat from oral lyophilized tablets loaded with a self-nanoemulsifying delivery system. Pharmaceutics [Internet]. 2020;12(6):534. doi: 10.3390/pharmaceutics12060534.
  • Singh S, Parashar P, Kanoujia J, et al. Transdermal potential and anti-gout efficacy of febuxostat from niosomal gel. J Drug Deliv Sci Technol. 2017;39:348–361. doi: 10.1016/j.jddst.2017.04.020.
  • Patel B, Thakkar H. Formulation development of fast dissolving microneedles loaded with cubosomes of febuxostat: in vitro and in vivo evaluation. Pharmaceutics [Internet]. 2023;15(1):224. doi: 10.3390/pharmaceutics15010224.
  • Ali Z, Din FU, Zahid F, et al. Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout. BMC Pharmacol Toxicol. 2022;23(1):86. doi: 10.1186/s40360-022-00625-y.
  • Kandav G, Bhatt DC, Singh SK. Effect of different molecular weights of chitosan on formulation and evaluation of allopurinol-loaded nanoparticles for kidney targeting and in management of hyperuricemic nephrolithiasis. AAPS PharmSciTech. 2022;23(5):144. doi: 10.1208/s12249-022-02297-7.
  • Kandav G, Bhatt DC, Jindal DK, et al. Formulation, optimization, and evaluation of allopurinol-loaded bovine serum albumin nanoparticles for targeting kidney in management of hyperuricemic nephrolithiasis. AAPS PharmSciTech. 2020;21(5):164. doi: 10.1208/s12249-020-01695-z.
  • Abdulaal WH, Alhakamy NA, Hosny KM. Preparation and characterization of a thioctic acid nanostructured lipid carrier to enhance the absorption profile and limit the nephrotoxicity associated with allopurinol in the treatment of gout. J Drug Deliv Sci Technol. 2021;66:102859. doi: 10.1016/j.jddst.2021.102859.
  • Ahuja BK, Jena SK, Paidi SK, et al. Formulation, optimization and in vitro–in vivo evaluation of febuxostat nanosuspension. Int J Pharm. 2015;478(2):540–552. doi: 10.1016/j.ijpharm.2014.12.003.
  • Amin OM, Ammar A, Eladawy SA. Febuxostat loaded β-cyclodextrin based nanosponge tablet: an in vitro and in vivo evaluation. J Pharm Investig. 2020;50(4):399–411. doi: 10.1007/s40005-019-00464-w.
  • Tayyab M, Haseeb MT, Alsahli TG, et al. Fabrication and optimization of febuxostat-loaded chitosan nanocarriers for better pharmacokinetics profile. Int J Biol Macromol. 2024;257(Pt 1):128448. doi: 10.1016/j.ijbiomac.2023.128448.
  • Sun J, Du J, Liu X, et al. Preparation of chitosan-coated hollow tin dioxide nanoparticles and their application in improving the oral bioavailability of febuxostat. Int J Pharm: X. 2023;6:100199.
  • Aganyants HA, Nikohosyan G, Danielyan KE. Albumin microparticles as the carriers for allopurinol and applicable for the treatment of ischemic stroke. Int Nano Lett. 2016;6(1):35–40. doi: 10.1007/s40089-015-0169-0.
  • Ye L, Gao Z, Rohani S. Intervertebral disk regeneration in a rat model by allopurinol–loaded chitosan/alginate hydrogel. Biomol Biomed. 2023;23(4):661–670. doi: 10.17305/bb.2022.8550.
  • Sharma N, Kumar S, Joshi G, et al. Formulation and characterization of febuxostat loaded nanostructured lipid carriers (NLCs)-gel for topical treatment of gout. Recent Pat Nanotechnol. 2022;16(3):250–258. doi: 10.2174/1872210515666210415114118.
  • El-Shenawy AA, Abdelhafez WA, Ismail A, et al. Formulation and characterization of nanosized ethosomal formulations of antigout model drug (febuxostat) prepared by cold method: in vitro/ex vivo and in vivo assessment. AAPS PharmSciTech. 2019;21(1):31. doi: 10.1208/s12249-019-1556-z.
  • Battelli MG, Bortolotti M, Polito L, et al. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2018;1864(8):2557–2565. doi: 10.1016/j.bbadis.2018.05.003.
  • Benn CL, Dua P, Gurrell R, et al. Physiology of hyperuricemia and urate-lowering treatments. Front Med. 2018;5:160. doi: 10.3389/fmed.2018.00160.
  • Hyon KC, Lucia Cea S, Yuqing Z, et al. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ. 2012;344:d8190.
  • Ganesan T, Muthudoss P, Voguri RS, et al. A new febuxostat-telmisartan drug-drug cocrystal for gout-hypertension combination therapy. J Pharm Sci. 2022;111(12):3318–3326. doi: 10.1016/j.xphs.2022.08.022.