1,096
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Molecular methods in cancer diagnostics: a short review

, ORCID Icon & ORCID Icon
Article: 2353893 | Received 14 Feb 2024, Accepted 18 Apr 2024, Published online: 16 May 2024

References

  • Melo-Silva AJ, Lucena JP, Hueneburg T. The evolution of molecular diagnosis using digital polymerase chain ­reaction to detect cancer via cell-free DNA and circulating tumor cells. Cell Biol Int. 2020;44(3):1–22. doi: 10.1002/cbin.11286.
  • Loud J, Murphy J. Cancer screening and early detection in the 21st century. Semin Oncol Nurs. 2017;33(2):121–128.
  • Liu H, Lu C, Han L, et al. Optical – magnetic probe for evaluating cancer therapy. Coord Chem Rev. 2021;441:213978. doi: 10.1016/j.ccr.2021.213978.
  • Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:20503121211034366.
  • Ravi SB, Annavajjula S. Surgical margins and its evaluation in oral cancer: a review. J Clin Diagn Res. 2014;8(9):ZE01–5.
  • Han S, Gao J, Zhou Q, et al. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res. 2018;10:199–206. doi: 10.2147/CMAR.S153482.
  • Song P. Advances in research on the relationship ­between the gut microbiome and cancer. Eur Rev Med Pharmacol Sci. 2021;25(16):5104–5112.
  • Paredes F, Williams HC, Martin AS. Metabolic adaptation in hypoxia and cancer. Cancer Lett. 2021;502:133–142.
  • Catala GN, Bestwick CS, Russell WR, et al. Folate, ­genomic stability and Colon cancer: the use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutat Res Genet Toxicol Environ Mutagen. 2019;843:73–80. doi: 10.1016/j.mrgentox.2018.08.012.
  • Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–199.
  • Selvakumar SC, Preethi KA, Ross K, et al. CRISPR/Cas9 and next generation sequencing in the personalized treatment of cancer. Mol Cancer. 2022;21(1):83.
  • Mondal R, Brahmbhatt N, Sandhu SK, et al. Applications of clustered regularly interspaced short palindromic repeats (CRISPR) as a genetic scalpel for the treatment of cancer: a translational narrative review. Cureus. 2024;15(12):e50031. doi: 10.7759/cureus.50031.
  • Tiansheng G, Junming H, Xiaoyun W, et al. lncRNA metastasis-associated lung adenocarcinoma transcript 1 promotes proliferation and invasion of non-small cell lung cancer cells via down-regulating miR-202 expression. Cell J. 2020;22(3):375–385. doi: 10.22074/cellj.2020.6837.
  • Goyal B, Yadav SRM, Awasthee N, et al. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188502. doi: 10.1016/j.bbcan.2021.188502.
  • Bernard PS, Wittwer CT. Real-time PCR technology for cancer diagnostics. Clin Chem. 2002;48(8):1178–1185. doi: 10.1093/clinchem/48.8.1178.
  • Valpione S, Campana L. Detection of circulating tumor DNA (ctDNA) by digital droplet polymerase chain reaction (dd-PCR) in liquid biopsies. In: Methods in enzymology. Amsterdam: Elsevier; 2019. p. 1–15. doi: 10.1016/bs.mie.2019.08.002.
  • Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics. 2019;13(1):34.
  • Burchill SA, Bradbury MF, Pittman K, et al. Detection of epithelial cancer cells in peripheral blood by reverse transcriptase-polymerase chain reaction. Br J Cancer. 1995;71(2):278–281. doi: 10.1038/bjc.1995.56.
  • Erali M, Voelkerding KV, Wittwer CT. High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol. 2008;85(1):50–58.
  • Wang R, Wang G, Zhang N, et al. Clinical evaluation and cost-effectiveness analysis of serum tumor markers in lung cancer. Biomed Res Int. 2013;2013:195692–195697. doi: 10.1155/2013/195692.
  • Kadja T, Liu C, Sun Y, et al. Low-cost, real-time polymerase chain reaction system for point-of-care medical diagnosis. Sensors. 2022;22(6):2320. doi: 10.3390/s22062320.
  • Gezer U, Bronkhorst AJ, Holdenrieder S. The clinical utility of droplet digital PCR for profiling circulating tumor DNA in breast cancer patients. Diagnostics. 2022;12(12):3042. doi: 10.3390/diagnostics12123042.
  • Murata M. Inflammation and cancer. Environ Health Prev Med. 2018;23(1):50.
  • Fabisiewicz A, Kulik J, Kober P, et al. Detection of circulating breast cancer cells in peripheral blood by a two-marker reverse transcriptase-polymerase chain ­reaction assay. Acta Biochim Pol. 2004;51(3):747–755. doi: 10.18388/abp.2004_3559.
  • Skondra M, Gkioka E, Kostakis ID, et al. Detection of circulating tumor cells in breast cancer patients using multiplex reverse transcription-polymerase chain reaction and specific primers for MGB, PTHRP and KRT19 correlation with clinicopathological features. Anticancer Res. 2014;34(11):6691–6699.
  • Mao X, Liu C, Tong H, et al. Principles of digital PCR and its applications in current obstetrical and gynecological diseases. Am J Transl Res. 2019;11(12):7209–7222.
  • Medford AJ, Gillani RN, Park BH. Detection of cancer DNA in early stage and metastatic breast cancer ­patients. In: Karlin-Neumann G, Bizouarn F, editors. Digital PCR. New York (NY): Springer New York; 2018. p. 209–227. (Methods in Molecular Biology; Vol. 1768).
  • Mosko MJ, Nakorchevsky AA, Flores E, et al. Ultrasensitive detection of multiplexed somatic mutations using MALDI-TOF mass spectrometry. J Mol Diagn. 2016;18(1):23–31. doi: 10.1016/j.jmoldx.2015.08.001.
  • Elnifro EM, Ashshi AM, Cooper RJ, et al. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13(4):559–570.
  • DNA Sequencing Technologies–History and Overview - IN. [cited 2024 Jan 25]. Available from: https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/next-generation-sequencing/dna-sequencing-history.html.
  • Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1–8. doi: 10.1016/j.ygeno.2015.11.003.
  • Finn PJ, Sun L, Nampalli S, et al. Synthesis and application of charge-modified dye-labeled dideoxynucleoside-5′-triphosphates to ‘direct-load’ DNA sequencing. Nucleic Acids Res. 2002;30(13):2877–2885. doi: 10.1093/nar/gkf387.
  • Guan Y-F, Li G-R, Wang R-J, et al. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer. 2012;31(10):463–470. doi: 10.5732/cjc.012.10216.
  • Dan S, Chen F, Choy KW, et al. Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS One. 2012;7(2):e27835. doi: 10.1371/journal.pone.0027835.
  • Karger BL, Guttman A. DNA sequencing by capillary. Electrophoresis. 2009;30(Suppl 1):S196–S202.
  • Murray V, Nguyen TV, Chen JK. The use of automated sequencing techniques to investigate the sequence selectivity of DNA-damaging agents. Chem Biol Drug Des. 2012;80(1):1–8. doi: 10.1111/j.1747-0285.2012.01379.x.
  • Zhang X, Liang Z, Wang S, et al. Next-generation sequencing and its clinical application. Cancer Biol Med. 2019;16(1):189–204.
  • Moo TA, Sanford R, Dang C, et al. Overview of breast cancer therapy. PET Clin. 2018;13(3):339–354. doi: 10.1016/j.cpet.2018.02.006.
  • Merid SK, Goranskaya D, Alexeyenko A. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics. 2014;15(1):308. doi: 10.1186/1471-2105-15-308.
  • Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO precision medicine working group. Ann Oncol. 2020;31(11):1491–1505. doi: 10.1016/j.annonc.2020.07.014.
  • Pervez MT, Hasnain MJu, Abbas SH, et al. A comprehensive review of performance of next-generation ­sequencing platforms. Biomed Res Int. 2022;2022:3457806–3457812. doi: 10.1155/2022/3457806.
  • Helmy M, Awad M, Mosa KA. Limited resources of genome sequencing in developing countries: challenges and solutions. Appl Transl Genom. 2016;9:15–19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911431/
  • Mantilla WA, Sanabria-Salas MC, Baldion AM, et al. NGS in lung, breast, and unknown primary cancer in Colombia: a multidisciplinary consensus on challenges and opportunities. J Clin Oncol Glob Oncol. 2021;7:1012–1023. https://ascopubs.org/doi/10.1200/GO.21.00046 doi: 10.1200/GO.21.00046.
  • Buono G, Gerratana L, Bulfoni M, et al. Circulating tumor DNA analysis in breast cancer: is it ready for prime-time? Cancer Treat Rev. 2019;73:73–83. doi: 10.1016/j.ctrv.2019.01.004.
  • Morganti S, Tarantino P, Ferraro E, et al. Complexity of genome sequencing and reporting: next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit Rev Oncol Hematol. 2019;133:171–182. doi: 10.1016/j.critrevonc.2018.11.008.
  • Pollard S, Dunne J, Costa S, et al. Stakeholder perspectives on navigating evidentiary and decision uncertainty in precision oncology. J Pers Med. 2022;12(1):22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778253/
  • Schmid S, Jochum W, Padberg B, et al. How to read a next-generation sequencing report-what oncologists need to know. ESMO Open. 2022;7(5):100570. doi: 10.1016/j.esmoop.2022.100570.
  • Tan AC, Lai GGY, Tan GS, et al. Utility of incorporating next-generation sequencing (NGS) in an Asian non-small cell lung cancer (NSCLC) population: incremental yield of actionable alterations and cost-effectiveness analysis. Lung Cancer. 2020;139:207–215. doi: 10.1016/j.lungcan.2019.11.022.
  • NGS vs. qPCR. [cited 2023 Aug 7]. Available from: https://sapac.illumina.com/science/technology/next-generation-sequencing/ngs-vs-qpcr.html.
  • Garibyan L, Avashia N. Research techniques made simple: polymerase chain reaction (PCR). J Invest Dermatol. 2013;133(3):e6–4. doi: 10.1038/jid.2013.1.
  • Long-read human genome sequencing and its applications - PMC. [cited 2024 Jan 25]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877196/.
  • Chen Z, He X. Application of third-generation sequencing in cancer research. Med Rev. 2021; 1(2):150–171. doi: 10.1515/mr-2021-0013.
  • Begum H, Murugesan P, Tangutur AD. Western blotting: a powerful staple in scientific and biomedical research. Biotechniques. 2022;73(1):58–69. doi: 10.2144/btn-2022-0003.
  • Sinkala E, Sollier-Christen E, Renier C, et al. Profiling protein expression in circulating tumour cells using microfluidic Western blotting. Nat Commun. 2017;8(1):14622. doi: 10.1038/ncomms14622.
  • Marchetto A, Romero-Pérez L. Western blot analysis in ewing sarcoma. Methods Mol Biol. 2021;2226:15–25. doi: 10.1007/978-1-0716-1020-6_2.
  • Ratan ZA, Zaman SB, Mehta V, et al. Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus. 2017;9(6):e1325. doi: 10.7759/cureus.1325
  • Shakoori AR. Fluorescence in situ hybridization (FISH) and its applications. In: Bhat TA, Ahmad wani A, editors. Chromosome structure and aberrations. Cham: Springer; 2017;343–367.
  • Celep F, Karagüzel A, Ozgür GK, et al. Detection of chromosomal aberrations in prostate cancer by fluorescence in situ hybridization (FISH). Eur Urol. 2003;44(6):666–671. doi: 10.1016/s0302-2838(03)00414-7.
  • Chrzanowska NM, Kowalewski J, Lewandowska MA. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules. 2020;25(8):1864. doi: 10.3390/molecules25081864.
  • Zheng J, Lu S, Huang Y, et al. Preoperative fluorescence in situ hybridization analysis as a predictor of tumor recurrence in patients with non-muscle invasive bladder cancer: a bi-institutional study. J Transl Med. 2023;21(1):685. doi: 10.1186/s12967-023-04528-2.
  • Wang X, Zheng B, Zhang RR, et al. Automated analysis of fluorescent in situ hybridization (FISH) labeled genetic biomarkers in assisting cervical cancer diagnosis. Technol Cancer Res Treat. 2010;9(3):231–242. doi: 10.1177/153303461000900302.
  • Redon R, Carter NP. Comparative genomic hybridization: microarray design and data interpretation. Methods Mol Biol. 2009;529:37–49.
  • Ribeiro IP, Melo JB, Carreira IM. Cytogenetics and cytogenomics evaluation in cancer. Int J Mol Sci. 2019;20(19):4711.
  • Weiss MM, Hermsen MA, Meijer GA, et al. Comparative genomic hybridisation. Mol Pathol. 1999;52(5):243–251.
  • Dutt A, Beroukhim R. Single nucleotide polymorphism array analysis of cancer. Curr Opin Oncol. 2007;19(1):43–49. doi: 10.1097/CCO.0b013e328011a8c1.
  • Bacolod MD, Schemmann GS, Giardina SF, et al. Emerging paradigms in cancer genetics: some ­important findings from high-density single nucleotide polymorphism array studies. Cancer Res. 2009;69(3):723–727. doi: 10.1158/0008-5472.CAN-08-3543.
  • Geiersbach KB, Gliem TJ, Jenkins SM, et al. Single-nucleotide polymorphism array for histologically ambiguous melanocytic tumors. J Mol Diagn. 2022;24(11):1160–1170. doi: 10.1016/j.jmoldx.2022.08.004.
  • Mao X, Young BD, Lu YJ. The application of single ­nucleotide polymorphism microarrays in cancer research. Curr Genomics. 2007;8(4):219–228.
  • Shao L, Heider A, Rabah R. Single nucleotide ­polymorphism array and cytogenetic analyses of ovarian teratomas in children. Genes Chromosomes Cancer. 2021;60(6):418–425. doi: 10.1002/gcc.22934.
  • Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat Commun. 2020;11(1):291. doi: 10.1038/s41467-019-14050-z.
  • Zhang P, Xia J-H, Zhu J, et al. High-throughput screening of prostate cancer risk loci by single nucleotide polymorphisms sequencing. Nat Commun. 2018;9(1):2022. doi: 10.1038/s41467-018-04451-x.
  • Ding Z, Wang N, Ji N, et al. Proteomics technologies for cancer liquid biopsies. Mol Cancer. 2022;21(1):53. doi: 10.1186/s12943-022-01526-8.
  • Jain KK. Role of proteomics in diagnosis of cancer. Technol Cancer Res Treat. 2002;1(4):281–286. doi: 10.1177/153303460200100409.
  • Burns J, Wilding CP, L Jones R, et al. Proteomic research in sarcomas – current status and future opportunities. Semin Cancer Biol. 2020;61:56–70.
  • Zamanian-Azodi M, Rezaei-Tavirani M, Mortazavian A, et al. Application of proteomics in cancer study. Am J Cancer Sci. 2013;2:116–133.
  • Tappia PS, Ramjiawan B. Biomarkers for early detection of cancer: molecular aspects. Int J Mol Sci. 2023;24(6):5272.
  • Kwon YW, Jo H-S, Bae S, et al. Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front Med. 2021;8:747333. doi: 10.3389/fmed.2021.747333.
  • Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci). 2018;6(3–4):79–100. doi: 10.1142/S2339547818300020.
  • Mukhopadhyay A, Deplancke B, Walhout AJM, et al. Chromatin immunoprecipitation (ChIP) coupled to ­detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc. 2008;3(4):698–709. doi: 10.1038/nprot.2008.38.
  • Salyer CV, Dontsi M, Armstrong MA, et al. Variation in physician-directed immunohistochemistry screening among women with endometrial cancer. Int J Gynecol Cancer. 2020;30(9):1356–1365. doi: 10.1136/ijgc-2020-001449.
  • Zhao S, Ma D, Xiao Y, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist. 2020;25(10):e1481–91–e1491. doi: 10.1634/theoncologist.2019-0982.
  • Collas P, Dahl J. Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front Biosci. 2008;13(13):929–943. doi: 10.2741/2733.
  • Xu S, Liu Y, Miao J. Chromatin immunoprecipitation ­assay in primary mouse hepatocytes and mouse liver. Methods Mol Biol. 2022;2455:149–161.
  • Zavarykina TM, Lomskova PK, Pronina IV, et al. Circulating tumor DNA is a variant of liquid biopsy with predictive and prognostic clinical value in breast cancer patients. Int J Mol Sci. 2023;24(23):17073. doi: 10.3390/ijms242317073.
  • Tie J, Cohen JD, Lahouel K, et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II Colon cancer. N Engl J Med. 2022;386(24):2261–2272. doi: 10.1056/NEJMoa2200075.
  • Maheaswari R, Kshirsagar JT, Lavanya N. Polymerase chain reaction: a molecular diagnostic tool in periodontology. J Indian Soc Periodontol. 2016;20(2):128–135. doi: 10.4103/0972-124X.176391.
  • Dwivedi S, Purohit P, Misra R, et al. Diseases and molecular diagnostics: a step closer to precision medicine. Indian J Clin Biochem. 2017;32(4):374–398. doi: 10.1007/s12291-017-0688-8.
  • Rossing M, Sørensen CS, Ejlertsen B, et al. Whole genome sequencing of breast cancer. APMIS. 2019;127(5):303–315.
  • Churko JM, Mantalas GL, Snyder MP, et al. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res. 2013;112(12):1613–1623.
  • Ding L, Wendl MC, Koboldt DC, et al. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet. 2010;19(R2):R188–R196. doi: 10.1093/hmg/ddq391.
  • Freeman WM, Hemby SE. Proteomics for protein ­expression profiling in neuroscience. Neurochem Res. 2004;29(6):1065–1081. doi: 10.1023/B:NERE.0000023594.21352.17.
  • Bergamo NA, Rogatto SR, Poli-Frederico RC, et al. Comparative genomic hybridization analysis detects ­frequent over-representation of DNA sequences at 3q, 7p, and 8q in head and neck carcinomas. Cancer Genet Cytogenet. 2000;119(1):48–55. doi: 10.1016/s0165-4608(99)00213-7.
  • Chandramouli K, Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics. 2009;2009:239204.
  • de Matos LL, Trufelli DC, de Matos MGL, et al. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights. 2010;5:9–20. doi: 10.4137/bmi.s2185.
  • Kidess-Sigal E, Liu HE, Triboulet MM, et al. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7(51):85349–85364.
  • Hacking SM, Yakirevich E, Wang Y. From immunohistochemistry to new digital ecosystems: a state-of-the-art biomarker review for precision breast cancer medicine. Cancers. 2022;14(14):3469. doi: 10.3390/cancers14143469.