816
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Machine learning in infectious diseases: potential applications and limitations

, & ORCID Icon
Article: 2362869 | Received 29 Feb 2024, Accepted 02 May 2024, Published online: 10 Jun 2024

References

  • Al Meslamani AZ, Jarab AS, Ghattas MA. The role of machine learning in healthcare responses to pandemics: maximizing benefits and filling gaps. J Med Econ. 2023;26(1):1–10. doi:10.1080/13696998.2023.2224018.
  • Abou Hajal A, Al Meslamani AZ. Overcoming barriers to machine learning applications in toxicity prediction. Expert Opin Drug Metab Toxicol. 2023:1–5. doi:10.1080/17425255.2023.2294939.
  • Park DJ, Park MW, Lee H, et al. Development of machine learning model for diagnostic disease prediction based on laboratory tests. Sci Rep. 2021;11(1):7567. doi:10.1038/s41598-021-87171-5.
  • Zoabi Y, Kehat O, Lahav D, et al. Predicting bloodstream infection outcome using machine learning. Sci Rep. 2021;11(1):20101. doi:10.1038/s41598-021-99105-2.
  • Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(8):1118. doi:10.1016/j.cmi.2019.09.009.
  • Yang J, Soltan AAS, Clifton DA. Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening. NPJ Digit Med. 2022;5(1):69. doi:10.1038/s41746-022-00614-9.
  • Kalipe G, Gautham V, Behera RK. Predicting malarial outbreak using machine learning and deep learning approach: a review and analysis. In Proceedings of the International Conference on Information Technology, ICIT. 2018; pp. 33–38. doi:10.1109/ICIT.2018.00019.
  • Sebastianelli A, Spiller D, Carmo R, et al. A reproducible ensemble machine learning approach to forecast dengue outbreaks. Sci Rep. 2024;14(1):3807. doi:10.1038/s41598-024-52796-9.
  • Abdulkareem AB, Sani NS, Sahran S, et al. Predicting COVID-19 based on environmental factors with machine learning. Intell Autom Soft Comput. 2021;28(2):305–320. doi:10.32604/iasc.2021.015413.
  • Amin S, Uddin MI, Alsaeed DH, et al. Early detection of seasonal outbreaks from twitter data using machine learning approaches. Complexity. 2021;2021:1–12. doi:10.1155/2021/5520366.
  • Moulaei K, Shanbehzadeh M, Mohammadi-Taghiabad Z, et al. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med Inform Decis Mak. 2023;22(1):1–12. doi:10.1186/S12911-021-01742-0.
  • Santangelo OE, Gentile V, Pizzo S, et al. Machine learning and prediction of infectious diseases: a systematic review. MAKE. 2023;5(1):175–198. doi:10.3390/make5010013.
  • Erbe R, Gore J, Gemmill K, et al. The use of machine learning to discover regulatory networks controlling biological systems. Mol Cell. 2022;82(2):260–273. doi:10.1016/j.molcel.2021.12.011.
  • Zhao AP, Li S, Cao Z, et al. AI for science: predicting infectious diseases. J Safety Sci Resilience. 2024;5:130–146. doi:10.1016/j.jnlssr.2024.02.002.
  • Holmdahl I, Buckee C. Wrong but useful - What Covid-19 epidemiologic models can and cannot tell us. N Engl J Med. 2020;383(4):303–305. doi:10.1056/NEJMp2016822.
  • Chowell G, Viboud C, Simonsen L, et al. Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Med. 2017;15(1):42. doi:10.1186/s12916-017-0811-y.
  • Meltzer MI, Santibanez S, Fischer LS, et al. Modeling in real time during the Ebola response. Morbidity and Mortality Weekly Report are service marks of the U.S. Department of Health and Human Services. 2016 [cited 2024 Jan 10]. https://www.cdc.gov/mmwr/volumes/65/su/su6503a12.htm#suggestedcitation.
  • Backer JA, Wallinga J. Spatiotemporal analysis of the 2014 Ebola epidemic in West Africa. PLoS Comput Biol. 2016;12(12):e1005210. doi:10.1371/journal.pcbi.1005210.
  • Borkenhagen LK, Allen MW, Runstadler JA. Influenza virus genotype to phenotype predictions through machine learning: a systematic review. Emerg. Microbes Infect. 2021;10(1):1896–1907. doi:10.1080/22221751.2021.1978824.
  • Shi A, Fan F, Broach JR. Microbial adaptive evolution. J Ind Microbiol Biotechnol. 2022;49(2):kuab076. doi:10.1093/jimb/kuab076.
  • Giacobbe DR, Zhang Y, de la Fuente J. Explainable artificial intelligence and machine learning: novel approaches to face infectious diseases challenges. Ann Med. 2023;55(2):2286336. doi:10.1080/07853890.2023.2286336.
  • Feldmeyer D, Meisch C, Sauter H, et al. Using OpenStreetMap data and machine learning to generate socio-economic indicators. IJGI. 2020;9(9):498. doi:10.3390/ijgi9090498.
  • Kondeti PK, Ravi K, Mutheneni SR, et al. Applications of machine learning techniques to predict filariasis using socio-economic factors. Epidemiol Infect. 2019;147:e260. doi:10.1017/S0950268819001481.
  • Tran NK, Albahra S, May L, et al. Evolving applications of artificial intelligence and machine learning in infectious diseases testing. Clin Chem. 2021;68(1):125–133. doi:10.1093/CLINCHEM/HVAB239.
  • Yang Z, Cui X, Song Z. Predicting sepsis onset in ICU using machine learning models: a systematic review and meta-analysis. BMC Infect Dis. 2023;23(1):635. doi:10.1186/S12879-023-08614-0/FIGURES/13.
  • Bhadriraju B, Narasingam A, Kwon JS-I. Machine learning-based adaptive model identification of systems: application to a chemical process. Chem Eng Res Des. 2019;152:372–383. https://www.sciencedirect.com/science/article/pii/S0263876219304162 doi:10.1016/j.cherd.2019.09.009.
  • Yu Y, Gawlitt S, de Andrade e Sousa LB, et al. Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect machine learning and data integration. Genome Biol. 2024;25(1):13. doi:10.1186/s13059-023-03153-y.
  • Watson GL, Xiong D, Zhang L, et al. Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLoS Comput Biol. 2021;17(3):e1008837. doi:10.1371/journal.pcbi.1008837.
  • Tomašev N, Harris N, Baur S, et al. Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records. Nat Protoc. 2021;16(6):2765–2787. doi:10.1038/s41596-021-00513-5.
  • Tomašev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572(7767):116–119. doi:10.1038/s41586-019-1390-1.
  • Galili U. Evolution in primates by "Catastrophic-selection" interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anti-carbohydrate antibodies. Am J Phys Anthropol. 2019;168(2):352–363. doi:10.1002/ajpa.23745.
  • Lewis H. Catastrophic selection as a factor in speciation. Evolution. 1962;16:257–271. doi:10.2307/2406275.
  • Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351(6277):1083–1087. doi:10.1126/science.aad5497.
  • Liu X, Liu Z, Wu Z, et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell. 2023;186(2):287–304.e26. doi:10.1016/j.cell.2022.12.017.
  • Maasch JRMA, Torres MDT, Melo MCR, et al. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe. 2023;31(8):1260–1274.e6. doi:10.1016/j.chom.2023.07.001.
  • Poland GA, Kennedy RB, McKinney BA, et al. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol. 2013;25(2):89–103. doi:10.1016/j.smim.2013.04.007.
  • de la Fuente J, Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31(50):5923–5929. doi:10.1016/j.vaccine.2013.10.049.
  • de la Fuente J, Villar M, Estrada-Peña A, et al. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Rev Vaccines. 2018;17(7):569–576. doi:10.1080/14760584.2018.1493928.
  • Coulston JW, Blinn CE, Thomas VA, et al. Approximating prediction uncertainty for random Forest regression models. Photogram Engng Rem Sens. 2016;82(3):189–197. doi:10.14358/PERS.82.3.189.
  • Ribeiro MT, Singh S, Guestrin C. Model-agnostic interpretability of machine learning. In Presented at 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY [cited 2024 Feb 23]. https://arxiv.org/abs/1606.05386v1.
  • Liu H, Wu X, Zhang S. Feature selection using hierarchical feature clustering. International Conference on Information and Knowledge Management, Proceedings. 2011 [cited 2024 Feb 23];979–984. https://dl.acm.org/doi/10.1145/2063576.2063716. doi:10.1145/2063576.2063716.
  • Alizadeh-Sani Z, Martínez PP, González GH, et al. A hybrid supervised/unsupervised machine learning approach to classify web services. Commun Comput Inform Sci. 2021;1472:93–103. https://link.springer.com/chapter/10.1007/978-3-030-85710-3_8 doi:10.1007/978-3-030-85710-3_8.
  • Singh C, Yu B, James Murdoch W. Hierarchical interpretations for neural network predictions. In 7th International Conference on Learning Representations, ICLR 2019. 2018 Jun 14 [cited 2024 Feb 23]. https://arxiv.org/abs/1806.05337v2.
  • Chen D, Goyal G, Go RS, et al. Improved interpretability of machine learning model using unsupervised clustering: predicting time to first treatment in chronic lymphocytic leukemia. J Clin Oncol Clin Cancer Inform. 2019;3:1–11. https://ascopubs.org/doi/10.1200/CCI.18.00137 doi:10.1200/CCI.18.00137.
  • Olivas Varela JÁ. Contribución al estudio experimental de la predicción basada en categorías deformables borrosas. 2000 [cited 2024 Feb 23]. https://dialnet.unirioja.es/servlet/tesis?codigo=8741&info=resumen&idioma=SPA.
  • Aljedaie MM, Alam P. In silico identification of human microRNAs pointing centrin genes in Leishmania donovani: considering the RNAi-mediated gene control. Front Genet. 2024;14:1329339. doi:10.3389/fgene.2023.1329339.
  • Sulea T, Kumar S, Kuroda D. Editorial: progress and challenges in computational structure-based design and development of biologic drugs. Front Mol Biosci. 2024;11:1360267. doi:10.3389/fmolb.2024.1360267.
  • Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: a comprehensive review. J Basic Microbiol. 2024;64(5):e2300579. doi:10.1002/jobm.202300579.