544
Views
0
CrossRef citations to date
0
Altmetric
Pulmonary Medicine

Research progress of megakaryocytes and platelets in lung injury

, , , &
Article: 2362871 | Received 25 Nov 2023, Accepted 17 May 2024, Published online: 20 Jun 2024

References

  • Meng Y, Carrelha J, Drissen R, et al. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat Cell Biol. 2023;25(6):1–11. doi:10.1038/s41556-023-01137-5.
  • Tilburg J, Becker IC, Italiano JE. Don’t you forget about (megakaryocytes). Blood. 2022;139(22):3245–3254. doi:10.1182/blood.2020009302.
  • Spindler M, Bergmeier W, Stradal TEB, et al. Novel insights into mouse models of ectopic proplatelet release. Blood Adv. 2022;6(24):6135–6139. doi:10.1182/bloodadvances.2022007824.
  • Lefrançais E, Ortiz-Muñoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–109. doi:10.1038/nature21706.
  • Xin Y, Peng J, Hong YY, et al. Advances in research on the effects of platelet activation in acute lung injury (review). Biomed Rep. 2022;16(3):17. doi:10.3892/br.2022.1500.
  • Martin JF, Slater DN, Trowbridge EA. Abnormal intrapulmonary platelet production: a possible cause of vascular and lung disease. Lancet. 1983;1(8328):793–796. doi:10.1016/s0140-6736(83)91851-2.
  • Nandhini B, Sureshraj Y, Kaviya M, et al. Review on the biogenesis of platelets in lungs and its alterations in SARS-CoV-2 infection patients. J Renin Angiotensin Aldosterone Syst. 2023;2023:7550197. doi:10.1155/2023/7550197.
  • Sim HJ, Bhattarai G, Kim MH, et al. Local and systemic overexpression of COMP-Ang1 induces Ang1/Tie2-Related thrombocytopenia and SDF-1/CXCR4-Dependent anemia. Stem Cells. 2023;41(1):93–104. doi:10.1093/stmcls/sxac080.
  • Mazharian A, Maître B, Bornert A, et al. Treatment of congenital thrombocytopenia and decreased collagen reactivity in G6b-B-deficient mice. Blood Adv. 2023;7(1):46–59. doi:10.1182/bloodadvances.2022008873.
  • Lefrançais E, Looney MR. Platelet biogenesis in the lung circulation. Physiology (Bethesda). 2019;34(6):392–401. doi:10.1152/physiol.00017.2019.
  • Tolksdorf C, Moritz E, Wolf R, et al. Platelet-Derived S1P and its relevance for the communication with immune cells in multiple human diseases. Int J Mol Sci. 2022;23(18):10278. doi:10.3390/ijms231810278.
  • Bertović I, Bura A, Jurak Begonja A. Developmental differences of in vitro cultured murine bone marrow- and fetal liver-derived megakaryocytes. Platelets. 2022;33(6):887–899. doi:10.1080/09537104.2021.2007869.
  • Ito Y, Nakamura S, Sugimoto N, et al. Turbulence activates platelet biogenesis to enable clinical scale ex vivo production. Cell. 2018;174(3):636–648.e18. doi:10.1016/j.cell.2018.06.011.
  • Yan R, Ge X, Pang N, et al. Essential role of zyxin in platelet biogenesis and glycoprotein Ib-IX surface expression. Cell Death Dis. 2021;12(11):955. doi:10.1038/s41419-021-04246-x.
  • Zhao X, Chong Z, Chen Y, et al. Protein arginine methyltransferase 1 in the generation of immune megakaryocytes: a perspective review. J Biol Chem. 2022;298(11):102517. doi:10.1016/j.jbc.2022.102517.
  • Yeung AK, Villacorta-Martin C, Hon S, et al. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv. 2020;4(24):6204–6217. doi:10.1182/bloodadvances.2020002843.
  • Wang H, He J, Xu C, et al. Decoding human megakaryocyte development. Cell Stem Cell. 2021;28(3):535–549.e8. doi:10.1016/j.stem.2020.11.006.
  • Frydman GH, Tessier SN, Wong KHK, et al. Megakaryocytes contain extranuclear histones and may be a source of platelet-associated histones during sepsis. Sci Rep. 2020;10(1):4621. doi:10.1038/s41598-020-61309-3.
  • Kligerman S. Pathogenesis, imaging, and evolution of acute lung injury. Radiol Clin North Am. 2022;60(6):925–939. doi:10.1016/j.rcl.2022.06.005.
  • Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond). 2022;136(10):747–769. doi:10.1042/CS20210879.
  • Toner P, Boyle AJ, McNamee JJ, et al. Aspirin as a treatment for ARDS: a randomized, placebo-controlled clinical trial. Chest. 2022;161(5):1275–1284. doi:10.1016/j.chest.2021.11.006.
  • Feng C, Cross AS, Vasta GR. Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury. Mol Immunol. 2023;156:127–135. doi:10.1016/j.molimm.2023.02.011.
  • Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116(12):3211–3219. doi:10.1172/JCI29499.
  • Fernández DI, Kuijpers MJE, Heemskerk JWM. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets. 2021;32(7):863–871. doi:10.1080/09537104.2020.1859103.
  • Zhi Z, Jooss NJ, Sun Y, et al. Galectin-9 activates platelet ITAM receptors glycoprotein VI and C-type lectin-like receptor-2. J Thromb Haemost. 2022;20(4):936–950. doi:10.1111/jth.15625.
  • Li Y, Feng G. TLR4 inhibitor alleviates sepsis-induced organ failure by inhibiting platelet mtROS production, autophagy, and GPIIb/IIIa expression. J Bioenerg Biomembr. 2022;54(3):155–162. doi:10.1007/s10863-022-09940-9.
  • Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol. 2022;13:953129. doi:10.3389/fimmu.2022.953129.
  • Zhang Y, Ehrlich SM, Zhu C, et al. Signaling mechanisms of the platelet glycoprotein Ib-IX complex. Platelets. 2022;33(6):823–832. doi:10.1080/09537104.2022.2071852.
  • Cognasse F, Duchez AC, Audoux E, et al. Platelets as key factors in inflammation: focus on CD40L/CD40. Front Immunol. 2022;13:825892. doi:10.3389/fimmu.2022.825892.
  • Dib PRB, Quirino-Teixeira AC, Merij LB, et al. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol. 2020;108(4):1157–1182. doi:10.1002/JLB.4MR0620-701R.
  • Lebedeva EV, Yushkov BG, Chereshnev VA. Megakaryocytopoiesis under hypoxic conditions. Bull Exp Biol Med. 2003;136(6):554–556. doi:10.1023/b:bebm.0000020201.51742.28.
  • Huang DY, Wang GM, Ke ZR, et al. Megakaryocytes in pulmonary diseases. Life Sci. 2022;301:120602. doi:10.1016/j.lfs.2022.120602.
  • Zhu A, Real F, Capron C, et al. Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci. 2022;79(7):365. doi:10.1007/s00018-022-04318-x.
  • Wang J, Xie J, Wang D, et al. CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens. Elife. 2022;11:e78662. doi:10.7554/eLife.78662.
  • Al-Kuraishy HM, Batiha GE, Al-Gareeb AI, et al. Receptor-dependent effects of sphingosine-1-phosphate (S1P) in COVID-19: the black side of the moon. Mol Cell Biochem. 2023;478(10):2271–2279. doi:10.1007/s11010-023-04658-7.
  • Weyrich AS, Zimmerman GA. Platelets in lung biology. Annu Rev Physiol. 2013;75(1):569–591. doi:10.1146/annurev-physiol-030212-183752.
  • Couldwell G, Machlus KR. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb Res. 2019;179:114–120. doi:10.1016/j.thromres.2019.05.008.
  • Washington AV, Esponda O, Gibson A. Platelet biology of the rapidly failing lung. Br J Haematol. 2020;188(5):641–651. doi:10.1111/bjh.16315.
  • Suresh MV, Balijepalli S, Solanki S, et al. Hypoxia-Inducible factor 1α and its role in lung injury: adaptive or maladaptive. Inflammation. 2023;46(2):491–508. doi:10.1007/s10753-022-01769-z.
  • Qi J, You T, Pan T, et al. Downregulation of hypoxia-inducible factor-1α contributes to impaired megakaryopoiesis in immune thrombocytopenia [published correction appears in thromb haemost. Thromb Haemost. 2017;117(10):e1–e2. doi:10.1160/TH17-03-0155.
  • Wang Z, Ren J, Liu Q, et al. Hypermucoviscous Klebsiella pneumoniae infections induce platelet aggregation and apoptosis and inhibit maturation of megakaryocytes. Thromb Res. 2018;171:45–54. doi:10.1016/j.thromres.2018.09.053.
  • Valdivia-Mazeyra MF, Salas C, Nieves-Alonso JM, et al. Increased number of pulmonary megakaryocytes in COVID-19 patients with diffuse alveolar damage: an autopsy study with clinical correlation and review of the literature. Virchows Arch. 2021;478(3):487–496. doi:10.1007/s00428-020-02926-1.
  • Mukund K, Nayak P, Ashokkumar C, et al. Immune response in severe and non-severe coronavirus disease 2019 (COVID-19) infection: a mechanistic landscape. Front Immunol. 2021;12:738073. doi:10.3389/fimmu.2021.738073.
  • Tang X, Xu Q, Yang S, et al. Toll-like receptors and thrombopoiesis. Int J Mol Sci. 2023;24(2):1010. doi:10.3390/ijms24021010.
  • Kim SJ, Carestia A, McDonald B, et al. Platelet-mediated NET release amplifies coagulopathy and drives lung pathology during severe influenza infection. Front Immunol. 2021;12:772859. doi:10.3389/fimmu.2021.772859.
  • Frydman GH, Ellett F, Jorgensen J, et al. Megakaryocytes respond during sepsis and display innate immune cell behaviors. Front Immunol. 2023;14:1083339. doi:10.3389/fimmu.2023.1083339.
  • Huang Y, Ji Q, Zhu Y, et al. Activated platelets autocrine 5-Hydroxytryptophan aggravates sepsis-induced acute lung injury by promoting neutrophils extracellular traps formation. Front Cell Dev Biol. 2021;9:777989. doi:10.3389/fcell.2021.777989.
  • Mandel J, Casari M, Stepanyan M, et al. Beyond hemostasis: platelet innate immune interactions and thromboinflammation. Int J Mol Sci. 2022;23(7):3868. doi:10.3390/ijms23073868.
  • Ling L, Zhang J, Li Y, et al. Platelets play a dual role in the pathophysiology of transfusion-related acute lung injury. Respir Physiol Neurobiol. 2023;309:104004. doi:10.1016/j.resp.2022.104004.
  • Suzuki-Inoue K, Tsukiji N. Platelet CLEC-2 and lung development. Res Pract Thromb Haemost. 2020;4(4):481–490. doi:10.1002/rth2.12338.
  • Gelon L, Fromont L, Lefrançais E. Occurrence and role of lung megakaryocytes in infection and inflammation. Front Immunol. 2022;13:1029223. doi:10.3389/fimmu.2022.1029223.
  • Wang Z, Tenzing N, Xu Q, et al. Apoptosis is one cause of thrombocytopenia in patients with high-altitude polycythemia. Platelets. 2023;34(1):2157381. doi:10.1080/09537104.2022.2157381.
  • Jin X, Yu H, Wang B, et al. Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. Part Fibre Toxicol. 2021;18(1):19. doi:10.1186/s12989-021-00411-4.
  • Thachil J, Lisman T. Pulmonary megakaryocytes in coronavirus disease 2019 (COVID-19): roles in thrombi and fibrosis. Semin Thromb Hemost. 2020;46(7):831–834. doi:10.1055/s-0040-1714274.
  • Zhou Y, Zhang B, Li C, et al. Megakaryocytes participate in the occurrence of bleomycin-induced pulmonary fibrosis. Cell Death Dis. 2019;10(9):648. doi:10.1038/s41419-019-1903-8.
  • Piasecki A, Leiva O, Ravid K. Lysyl oxidase inhibition in primary myelofibrosis: a renewed strategy. Arch Stem Cell Ther. 2020;1(1):23–27. doi:10.46439/stemcell.1.005.
  • Löfdahl A, Nybom A, Wigén J, et al. Pulmonary 5-HT2B receptor expression in fibrotic interstitial lung diseases. Acta Histochem. 2023;125(3):152024. doi:10.1016/j.acthis.2023.152024.
  • Saito S, Chung CHH, Jacob A, et al. Hematopoietic and lung platelet biogenesis as a prognostic indicator in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2022;206(9):1174–1177. doi:10.1164/rccm.202206-1195LE.
  • Balko J, Havlin J, CasasMendez F, et al. Mapping of the lung megakaryocytes: a role in pathogenesis of idiopathic pulmonary arterial hypertension? Pathol Res Pract. 2022;237:154060. doi:10.1016/j.prp.2022.154060.
  • Kazimierczyk R, Kamiński K. The role of platelets in the development and progression of pulmonary arterial hypertension. Adv Med Sci. 2018;63(2):312–316. doi:10.1016/j.advms.2018.04.013.
  • Gallardo-Vara E, Ntokou A, Dave JM, et al. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant. 2023;42(5):544–552. doi:10.1016/j.healun.2022.12.012.
  • McDowell RE, Aulak KS, Almoushref A, et al. Platelet glycolytic metabolism correlates with hemodynamic ­severity in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2020;318(3):L562–L569. doi:10.1152/ajplung.00389.2019.
  • Poirault-Chassac S, Nivet-Antoine V, Houvert A, et al. Mitochondrial dynamics and reactive oxygen species initiate thrombopoiesis from mature megakaryocytes. Blood Adv. 2021;5(6):1706–1718. doi:10.1182/bloodadvances.2020002847.
  • Huang W, Zhao S, Xu W, et al. Presence of intra-tumoral CD61+ megakaryocytes predicts poor prognosis in non-small cell lung cancer. Transl Lung Cancer Res. 2019;8(4):323–331. doi:10.21037/tlcr.2019.08.23.
  • Filippelli A, Del Gaudio C, Simonis V, et al. Scoping ­review on platelets and tumor angiogenesis: do We need more evidence or better analysis? Int J Mol Sci. 2022;23(21):13401. doi:10.3390/ijms232113401.
  • Jiang J, Qin J, Li J, et al. Ricolinostat promotes the generation of megakaryocyte progenitors from human hematopoietic stem and progenitor cells. Stem Cell Res Ther. 2022;13(1):54. doi:10.1186/s13287-022-02722-5.
  • Liu Y, Zhang Y, Ding Y, et al. Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Crit Rev Oncol Hematol. 2021;167:103502. doi:10.1016/j.critrevonc.2021.103502.
  • Song AB, Al-Samkari H. Emerging data on thrombopoietin receptor agonists for management of chemotherapy-induced thrombocytopenia. Expert Rev Hematol. 2023;16(5):365–375. doi:10.1080/17474086.2023.2201428.
  • Jin W, Chuang CC, Jin H, et al. Effects of Pre-Hospital antiplatelet therapy on the incidence of ARDS. Respir Care. 2020;65(7):1039–1045. doi:10.4187/respcare.07177.
  • Chebbo M, Duez C, Alessi MC, et al. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev. 2021;30(161):210062. doi:10.1183/16000617.0062-2021.
  • Wang D, Liu F, Yang W, et al. Meldonium ameliorates hypoxia-induced lung injury and oxidative stress by regulating platelet-type phosphofructokinase-mediated glycolysis. Front Pharmacol. 2022;13:863451. doi:10.3389/fphar.2022.863451.
  • Yang K, Wu B, Wei W, et al. Curdione ameliorates sepsis-induced lung injury by inhibiting platelet-mediated neutrophil extracellular trap formation. Int Immunopharmacol. 2023;118:110082. doi:10.1016/j.intimp.2023.110082.
  • Tasso R, Marconi S, Rossi G, et al. Platelets and their derived extracellular vesicles: the new generation of markers in non-small cell lung cancer management. Drug Discov Today. 2023;28(7):103616. doi:10.1016/j.drudis.2023.103616.
  • Best MG, Sol N, In ‘t Veld SGJG, et al. Swarm Intelligence-Enhanced detection of non-small-cell lung cancer using tumor-Educated platelets. Cancer Cell. 2017;32(2):238–252.e9. doi:10.1016/j.ccell.2017.07.004.