1,606
Views
32
CrossRef citations to date
0
Altmetric
SPECIAL SECTION ON STEM CELLS: REVIEW ARTICLE

Human embryonic stem cells: Possibilities for human cell transplantation

, , , , , & show all
Pages 521-532 | Published online: 08 Jul 2009

References

  • Thomson J., Itskovitz‐Eldor J., Shapiro S., Waknitz M., Swiergiel J., Marshall V., et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–7
  • Reubinoff B. E., Pera M. F., Fong C. Y., Trounson A., Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18: 399–404
  • Amit M., Carpenter M. K., Inokuma M. S., Chiu C. P., Harris C. P., Waknitz M. A., et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271–8
  • Hovatta O., Mikkola M., Gertow K., Stromberg A. ‐M., Inzunza J., Hreinsson J., et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003; 18: 1404–9
  • Park J. H., Kim S. J., Oh E. J., Moon S. Y., Roh S. I., Kim C. G., et al. Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol Reprod 2003; 69: 2007–14
  • Richards M., Fong C. ‐Y., Chan W. ‐K., Wong P. ‐C., Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cell lines. Nat Biotechnol 2002; 20: 933–6
  • Richards M., Tan S., Fong C. ‐Y., Biswas A., Chan W. ‐K., Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 2003; 21: 546–56
  • Soria B. In‐vitro differentiation of pancreatic beta‐cells. Differentiation 2001; 4: 205–19
  • Studer L., Csete M., Lee S. ‐H., Kabbani N., Walikonis J., Wold B., et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci 2000; 20: 7377–83
  • Schuldiner M., Yanuka O., Itskovitz‐Eldor J., Melton D. A., Benvenisty N. From the Cover: Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2000; 97: 11307–12
  • Reubinoff B. E., Itsykson P., Turetsky T., Pera M. F., Reinhartz E., Itzik A., et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19: 1134–40
  • Kaufman D. S., Hanson E. T., Lewis R. L., Auerbach R., Thomson J. A. Hematopoietic colony‐forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2001; 98: 10716–21
  • Kehat I., Gepstein A., Spira A., Itskovitz‐Eldor J., Gepstein L. High‐resolution electrophysiological assessment of human embryonic stem cell‐derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res 2002; 91: 659–61
  • Reppel M., Boettinger C., Hescheler J. Beta‐adrenergic and muscarinic modulation of human embryonic stem cell‐derived cardiomyocytes. Cell Physiol Biochem 2004; 14: 187–96
  • Gao B. ‐X., Cheng G., Ziskind‐Conhaim L. Development of spontaneous synaptic transmission in the rat spinal cord. J Neurophysiol 1998; 79: 2277–87
  • Li X. J., Du Z. W., Zarnowska E. D., Pankratz M., Hansen L. O., Pearce R. A., et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 2005; 23: 215–21
  • Dunne M. J., Cosgrove K. E., Shepherd R. M., Aynsley‐Green A., Lindley K. J. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 2004; 84: 239–75
  • Slingerland A. S., Hattersley A. T. Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann Med 2005; 37: 186–95
  • Roberts R., Brugada R. Genetics and arrhythmias. Ann Rev Med 2003; 54: 257–67
  • Tester D. J., Will M. L., Haglund C. M., Ackerman M. J. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005; 2: 507–17
  • Graves T. D., Hanna M. G. Neurological channelopathies. Postgrad Med J 2005; 81: 20–32
  • Blyszczuk P., Czyz J., Kania G., Wagner M., Roll U., St‐Onge L., et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin‐positive progenitor and insulin‐producing cells. Proc Natl Acad Sci U S A 2003; 100: 998–1003
  • Blyszczuk P., Asbrand C., Rozzo A., Kania G., St‐Onge L., Rupnik M., et al. Embryonic stem cells differentiate into insulin‐producing cells without selection of nestin‐expressing cells. Int J Dev Biol 2004; 48: 1095–104
  • Hansson M., Tonning A., Frandsen U., Petri A., Rajagopal J., Englund M. C., et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004; 53: 2603–9
  • Hori Y., Rulifson I. C., Tsai B. C., Heit J. J., Cahoy J. D., Kim S. K. Growth inhibitors promote differentiation of insulin‐producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A 2002; 99: 16105–10
  • Ku H. T., Zhang N., Kubo A., O'Connor R., Mao M., Keller G., et al. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 2004; 22: 1205–17
  • Miyazaki S., Yamato E., Miyazaki J. Regulated expression of pdx‐1 promotes in vitro differentiation of insulin‐producing cells from embryonic stem cells. Diabetes 2004; 53: 1030–7
  • Rajagopal J., Anderson W. J., Kume S., Martinez O. I., Melton D. A. Insulin staining of ES cell progeny from insulin uptake. Science 2003; 299: 363
  • Segev H., Fishman B., Ziskind A., Shulman M., Itskovitz‐Eldor J. Differentiation of human embryonic stem cells into insulin‐producing clusters. Stem Cells 2004; 22: 265–74
  • Sipione S., Eshpeter A., Lyon J. G., Korbutt G. S., Bleackley R. C. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 2004; 47: 499–508
  • Schulz T. C., Noggle S. A., Palmarini G. M., Weiler D. A., Lyons I. G., Pensa K. A., et al. Differentiation of human embryonic stem cells to dopaminergic neurons in serum‐free suspension culture. Stem Cells 2004; 22: 1218–38
  • Park C. H., Minn Y. K., Lee J. Y., Choi D. H., Chang M. Y., Shim J. W., et al. In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons. J Neurochem 2005; 92: 1265–76
  • Peltoniemi P., Yki‐Jarvinen H., Oikonen V., Oksanen A., Takala T. O., Ronnemaa T., et al. Resistance to exercise‐induced increase in glucose uptake during hyperinsulinemia in insulin‐resistant skeletal muscle of patients with type 1 Diabetes. Diabetes 2001; 50: 1371–7
  • Vuorinen‐Markkola H., Sinisalo M., Koivisto V. Guar gum in insulin‐dependent diabetes: effects on glycemic control and serum lipoproteins. Am J Clin Nutr 1992; 56: 1056–60
  • Yki‐Järvinen H. D., Mott A. A., Young K. S., Bogardus C. Regulation of glycogen synthase and phosphorylase activities by glucose, insulin and basal enzyme activity in human skeletal muscle. J Clin Invest 1987; 80: 95–100
  • Shapiro A. M. J., Lakey J. R. T., Ryan E. A., Korbutt G. S., Toth E., Warnock G. L., et al. Islet transplantation in seven patients with type 1 Diabetes Mellitus using a glucocorticoid‐free immunosuppressive Regimen. N Engl J Med 2000; 343: 230–8
  • Bonner‐Weir S., Taneja M., Weir G. C., Tatarkiewicz K., Song K. ‐H., Sharma A., et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci U S A 2000; 97: 7999–8004
  • Hui H. X., Wright C., Perfetti R. Glucagon‐like peptide 1 induces differentiation of islet duodenal homeobox‐1‐positive pancreatic ductal cells into insulin‐secreting cells. Diabetes 2001; 50: 785–96
  • Zulewski H., Abraham E. J., Gerlach M. J., Daniel P. B., Moritz W., Muller B., et al. Multipotential nestin‐positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001; 50: 521–33
  • Beattie G. M., Otonkoski T., Lopez A. D., Hayek A. Functional beta‐cell mass after transplantation of human foetal pancreatic cells: differentiation or proliferation?. Diabetes 1997; 46: 244–8
  • Assady S., Maor G., Amit M., Itskovitz‐Eldor J., Skorecki K. L., Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001; 50: 1691–7
  • Lumelsky N., Blondel O., Laeng P., Velasco I., Ravin R., McKay R. Differentiation of embryonic stem cells to insulin‐secreting structures similar to pancreatic islets. Science 2001; 292: 1389–94
  • Fougerousse F., Bullen P., Herasse M., Lindsay S., Richard I., Wilson D., et al. Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Human Molecular Genetics 2000; 9: 165–73
  • Piper K., Brickwood S., Turnpenny L., Cameron I., Ball S., Wilson D., et al. Beta cell differentiation during early human pancreas development. J Endocrinol 2004; 181: 11–23
  • Richardson M. K., Hanken J., Gooneratne M. L., Pieau C., Raynaud A., Selwood L., et al. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 1997; 196: 91–106
  • Zhang S. C., Wernig M., Duncan I. D., Brustle O., Thomson J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001; 19: 1129–33
  • Tabar V., Panagiotakos G., Greenberg E. D., Chan B. K., Sadelain M., Gutin P. H., et al. Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 2005; 23: 601–6
  • Akiyama Y., Honmou O., Kato T., Uede T., Hashi K., Kocsis J. D. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Experimental Neurology 2001; 167: 27–39
  • Fricker R. A., Carpenter M. K., Winkler C., Greco C., Gates M. A., Bjorklund A. Site‐specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci 1999; 19: 5990–6005
  • Shin S., Dalton S., Stice S. Human motor neuron differentiation from human embryonic stem cells. Stem Cells Dev 2005; 14: 266–9
  • Kerr D. A., Llado J., Shamblott M. J., Maragakis N. J., Irani D. N., Crawford T. O., et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 2003; 23: 5131–40
  • Ben‐Hur T., Idelson M., Khaner H., Pera M., Reinhartz E., Itzik A., et al. Transplantation of human embryonic stem cell‐derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004; 22: 1246–55
  • Freed C. R., Breeze R. E., Rosenberg N. L., Schneck S. A., Wells T. H., Barrett J. N., et al. Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch Neurol 1990; 47: 505–12
  • Kojima S., Omura T., Wakamatsu W., Kishi M., Yamazaki T., Iida M., et al. Prognosis and disability of stroke patients after 4 years in Akita, Japan. Stroke 1990; 21: 72–7
  • Andrews P. W., Damjanov I., Simon D., Banting G., Carlin C., Dracopoli N. C., et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera‐2: differentiation in vivo and in vitro. Lab Invest 1984; 50: 147–62
  • Andrews P. W. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 1984; 103: 285–93
  • Pleasure S. J., Page C., Lee V. M. ‐Y. Pure, postmitotic, polarized human neurons derived from Ntera2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 1992; 12: 1802–15
  • Hartley R. S., Margulis M., Fishman P. S., Lee V. M. ‐Y., Tang C. ‐M. Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J Comp Neurol 1999; 407: 1–10
  • Lee V. M. ‐Y., Hartley R. S., Trojanowski J. Q. Neurobiology of human neurons (NT2N) grafted into mouse spinal cord: implications for improved therapy of spinal cord injury. Prog Brain Res 2000; 128: 299–307
  • Nelson P. T., Kondziolka D., Wechsler L., Goldstein S., Gebel J., Decesare S., et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 2002; 160: 1201–6
  • Meltzer C. C., Kondziolka D., Villemagne V. L., Wechsler L., Goldstein S., Thulborn K. R., et al. Serial [18F]fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery 2001; 49: 586–92
  • Wechsler L. R. Stem cell transplantation for stroke. Cleve Clin J Med 2004; 71: S40–1
  • Mummery C., Ward D., van den Brink C. E., Bird S. D., Doevendans P. A., Opthof T., et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J Anat 2002; 200: 233–42
  • Beltrami A. P., Urbanek K., Kajstura J., Yan S. M., Finato N., Bussani R., et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344: 1150–7
  • Quaini F., Urbanek K., Beltrami A. P., Finato N., Beltrami C. A., Nadal‐Ginard B., et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346: 5–15
  • He J. Q., Ma Y., Lee Y., Thomson J. A., Kamp T. J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003; 93: 32–9
  • Kehat I., Kenyagin‐Karsenti D., Snir M., Segev H., Amit M., Gepstein A., et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest 2001; 108: 407–14
  • Kehat I., Khimovich L., Caspi O., Gepstein A., Shofti R., Arbel G., et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004; 22: 1282–9
  • Xu C., Inokuma M. S., Denham J., Golds K., Kundu P., Gold J. D., et al. Feeder‐free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001; 19: 971–4
  • Mummery C., Ward‐van Oostwaard D., Doevendans P., Spijker R., van den Brink S., Hassink R., et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm‐like cells. Circulation 2003; 107: 2733–40
  • Chadwick K., Wang L., Li L., Menendez P., Murdoch B., Rouleau A., et al. Cytokines and BMP‐4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003; 102: 906–15
  • Cerdan C., Rouleau A., Bhatia M. VEGF‐A165 augments erythropoietic development from human embryonic stem cells. Blood 2004; 103: 2504–12
  • Sottile V., Thomson A., McWhir J. In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 2003; 5: 149–55
  • Bielby R. C., Boccaccini A. R., Polak J. M., Buttery L. D. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 2004; 10: 1518–25
  • Leon‐Quinto T., Jones J., Skoudy A., Burcin M., Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin‐producing cells. Diabetologia 2004; 47: 1442–51
  • Draper J. S., Smith K., Gokhale P., Moore H. D., Maltby E., Johnson J., et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2004; 22: 53–4
  • Schuldiner M., Itskovitz‐Eldor J., Benvenisty N. Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 2003; 21: 257–65
  • Chung S., Sonntag K. ‐C., Andersson T., Bjorklund L. M., Park J. ‐J., Kim D. ‐W., et al. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 2002; 16: 1829–38
  • Helgason C., Sauvageau G., Lawrence H., Largman C., Humphries R. Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood 1996; 87: 2740–9
  • Prelle K., Wobus A. M., Krebs O., Blum W. F., Wolf E. Overexpression of insulin‐like growth factor‐II in mouse embryonic stem cells promotes myogenic differentiation. Biochem Biophys Res Commun 2000; 277: 631–8
  • Tai G., Polak J. M., Bishop A. E., Christodoulou I., Buttery L. D. Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix. Tissue Eng 2004; 10: 1456–66
  • Sudou A., Muramatsu H., Kaname T., Kadomatsu K., Muramatsu T. Le(X) structure enhances myocardial differentiation from embryonic stem cells. Cell Struct Funct 1997; 22: 247–51
  • Zwaka T. P., Thomson J. A. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21: 319–21
  • Lavon N., Benvenisty N. Differentiation and genetic manipulation of human embryonic stem cells and the analysis of the cardiovascular system. Trends Cardiovasc Med 2003; 13: 47–52
  • Lavon N., Yanuka O., Benvenisty N. Differentiation and isolation of hepatic‐like cells from human embryonic stem cells. Differentiation 2004; 72: 230–8
  • Li L., Baroja M. L., Majumdar A., Chadwick K., Rouleau A., Gallacher L., et al. Human embryonic stem cells possess immune‐privileged properties. Stem Cells 2004; 22: 448–56
  • Drukker M., Katz G., Urbach A., Schuldiner M., Markel G., Itskovitz‐Eldor J., et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 2002; 99: 9864–9
  • Hwang W. S., Ryu Y. J., Park J. H., Park E. S., Lee E. G., Koo J. M., et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 2004; 303: 1669–74
  • Hwang W. S., Roh S. I., Lee B. C., Kang S. K., Kwon D. K., Kim S., et al. Patient‐specific embryonic stem cells derived from human SCNT blastocysts. Science 2005; 308: 777–83
  • Drukker M., Katchman H., Katz G., Even‐Tov Friedman S., Shezen E., Horenstein E., et al. Human embryonic stem cells and their differentiated derivatives are less susceptible for immune rejection than adult cells. Stem Cells. 2005; Aug. (Epub ahead of print 2005‐0188). 0000
  • Fairchild P. J., Cartland S., Nolan K. F., Waldmann H. Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol 2004; 25: 465–70
  • Draper J. S., Moore H. D., Ruban L. N., Gokhale P. J., Andrews P. Culture and characterization of human embryonic stem cells. Stem Cells Dev 2004; 4: 325–36
  • Hovatta O., Skottman H. Feeder‐free derivation of human embryonic stem‐cell lines. Lancet 2005; 365: 1601–3
  • Klimanskaya I., Chung Y., Meisner L., Johnson J., West M. D., Lanza R. Human embryonic stem cells derived without feeder cells. Lancet 2005; 365: 1636–41
  • Andrews P. W., Benvenisty N., McKay R., Pera M. F., Rossant J., Semb H., et al. The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nat Biotechnol 2005; 23: 795–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.