2,097
Views
84
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Pharmacogenomics and antidepressant drugs

&
Pages 82-94 | Published online: 26 Aug 2009

References

  • Weinshilboum R. Inheritance and drug response. N Engl J Med 2003; 348: 529–37
  • Roden D. M., George A. L., Jr. The genetic basis of variability in drug responses. Nat Rev Drug Discov 2002; 1: 37–44
  • Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921
  • Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., et al. The sequence of the human genome. Science 2001; 291: 1304–51
  • Pare C., Rees L., Saisbury M. Differentiation of two genetically specific types of depression by the response to antidepressants. Lancet 1962; 29: 1340–3
  • Angst J. A clinical analysis of the effects of tofranil in depression: longitudinal and follow‐up studies. Treatment of blood‐relations. Psychopharmacologia 1961; 2: 381–407
  • O'Reilly R. L., Bogue L., Singh S. M. Pharmacogenetic response to antidepressants in a multicase family with affective disorder. Biol Psychiatry 1994; 36: 467–71
  • Franchini L., Serretti A., Gasperini M., Smeraldi E. Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res 1998; 32: 255–9
  • Turecki G., Grof P., Grof E., D'Souza V., Lebuis L., Marineau C., et al. Mapping susceptibility genes for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. Mol Psychiatry 2001; 6: 570–8
  • Serretti A., Franchini L., Gasperini M., Rampoldi R., Smeraldi E. Mode of inheritance in mood disorder families according to fluvoxamine response. Acta Psychiatr Scand 1998; 98: 443–50
  • Staddon S., Arranz J., Mancama D., Mata I., Kerwin R. W. Clinical application of pharmacogenetics in psychiatry. Psychopharmacology 2002; 162: 18–23, Epub 2002 Apr 25
  • Steimer W., Muller B., Leucht S., Kissling W. Pharmacogenetics: a new diagnostic tool in the management of antidepressive drug therapy. Clin Chim Acta 2001; 308: 33–41
  • Bertilsson L., Dahl M. L., Dalen P., Al‐Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–22
  • Nebert D. W., Dieter M. Z. The evolution of drug metabolism. Pharmacology 2000; 61: 124–35
  • Dalen P., Dahl M. L., Ruiz M. L., Nordin J., Bertilsson L. 10‐Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–52
  • Sindrup S. H., Brosen K., Gram L. F., Hallas J., Skjelbo E., Allen A., et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87
  • Ozdemir V., Tyndale R. F., Reed K., Herrmann N., Sellers E. M., Kalow W., et al. Paroxetine steady‐state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol 1999; 19: 472–5
  • Veefkind A. H., Haffmans P. M., Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–8
  • Fukuda T., Nishida Y., Zhou Q., Yamamoto I., Kondo S., Azuma J. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–80
  • Lessard E., Yessine M. A., Hamelin B. A., O'Hara G., LeBlanc J., Turgeon J. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–43
  • Burke M. J., Preskorn S. H. Therapeutic drug monitoring of antidepressants: cost implications and relevance to clinical practice. Clin Pharmacokinet 1999; 37: 147–65
  • Preskorn S. H., Dorey R. C., Jerkovich G. S. Therapeutic drug monitoring of tricyclic antidepressants. Clin Chem 1988; 34: 822–8
  • Preskorn S. H., Lane R. M. Sertraline 50 mg daily: the optimal dose in the treatment of depression. Int Clin Psychopharmacol 1995; 10: 129–41
  • Corruble E., Guelfi J. D. Does increasing dose improve efficacy in patients with poor antidepressant response: a review. Acta Psychiatr Scand 2000; 101: 343–8
  • Kirchheiner J., Brosen K., Dahl M. L., Gram L. F., Kasper S., Roots I., et al. CYP2D6 and CYP2C19 genotype‐based dose recommendations for antidepressants: a first step towards subpopulation‐specific dosages. Acta Psychiatr Scand 2001; 104: 173–92
  • Kirchheiner J., Nickchen K., Bauer M., Wong M. L., Licinio J., Roots I., et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–73
  • Brosen K., Naranjo C. A. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 2001; 11: 275–83
  • Murphy G. M., Jr., Kremer C., Rodrigues H. E., Schatzberg A. F. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–5
  • Brosen K., Hansen J. G., Nielsen K. K., Sindrup S. H., Gram L. F. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55
  • Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug‐resistance gene product P‐glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84: 7735–8
  • Cordon‐Cardo C., O'Brien J. P., Casals D., Rittman‐Grauer L., Biedler J. L., Melamed M. R., et al. Multidrug‐resistance gene (P‐glycoprotein) is expressed by endothelial cells at blood‐brain barrier sites. Proc Natl Acad Sci U S A 1989; 86: 695–8
  • Schinkel A. H., Wagenaar E., Mol C. A., van Deemter L. P‐glycoprotein in the blood‐brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24
  • Uhr M., Steckler T., Yassouridis A., Holsboer F. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood‐brain barrier deficiency due to mdr1a P‐glycoprotein gene disruption. Neuropsychopharmacology 2000; 22: 380–7
  • Uhr M., Grauer M. T. abcb1ab P‐glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 2003; 37: 179–85
  • Uhr M., Grauer M. T., Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P‐glycoprotein gene disruption. Biol Psychiatry 2003; 54: 840–6
  • Brinkmann U., Roots I., Eichelbaum M. Pharmacogenetics of the human drug‐transporter gene MDR1: impact of polymorphisms on pharmacotherapy. Drug Discov Today 2001; 6: 835–9
  • Uhr M. ABCB1 genotyping is crucial for treatment with drugs that are P‐glycoprotein substrates. Abstract, Meeting Society of Biological Psychiatry 2005; 57: 785
  • Ramamoorthy S., Leibach F. H., Mahesh V. B., Ganapathy V. Partial purification and characterization of the human placental serotonin transporter. Placenta 1993; 14: 449–61
  • Lesch K. P., Wolozin B. L., Estler H. C., Murphy D. L., Riederer P. Isolation of a cDNA encoding the human brain serotonin transporter. J Neural Transm Gen Sect 1993; 91: 67–72
  • Lesch K. P., Bengel D., Heils A., Sabol S. Z., Greenberg B. D., Petri S., et al. Association of anxiety‐related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–31
  • Heils A., Teufel A., Petri S., Stober G., Riederer P., Bengel D., et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66: 2621–4
  • Gelernter J., Cubells J. F., Kidd J. R., Pakstis A. J., Kidd K. K. Population studies of polymorphisms of the serotonin transporter protein gene. Am J Med Genet 1999; 88: 61–6
  • Nakamura M., Ueno S., Sano A., Tanabe H. The human serotonin transporter gene linked polymorphism (5‐HTTLPR) shows ten novel allelic variants. Mol Psychiatry 2000; 5: 32–8
  • Hahn M. K., Blakely R. D. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J 2002; 2: 217–35
  • Smeraldi E., Zanardi R., Benedetti F., Di Bella D., Perez J., Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508–11
  • Zanardi R., Benedetti F., Di Bella D., Catalano M., Smeraldi E. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 2000; 20: 105–7
  • Pollock B. G., Ferrell R. E., Mulsant B. H., Mazumdar S., Miller M., Sweet R. A., et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late‐life depression. Neuropsychopharmacology 2000; 23: 587–90
  • Arias B., Catalan R., Gasto C., Gutierrez B., Fananas L. 5‐HTTLPR polymorphism of the serotonin transporter gene predicts nonremission in major depression patients treated with citalopram in a 12‐weeks follow up study. J Clin Psychopharmacol 2003; 23: 563–7
  • Zanardi R., Serretti A., Rossini D., Franchini L., Cusin C., Lattuada E., et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5‐HTTLPR in delusional and nondelusional depression. Biol Psychiatry 2001; 50: 323–30
  • Rausch J. L., Johnson M. E., Fei Y. J., Li J. Q., Shendarkar N., Hobby H. M., et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry 2001; 51: 723–32
  • Joyce P. R., Mulder R. T., Luty S. E., McKenzie J. M., Miller A. L., Rogers G. R., et al. Age‐dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol 2003; 6: 339–46
  • Durham L. K., Webb S. M., Milos P. M., Clary C. M., Seymour A. B. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 2004; 174: 525–9, Epub 2003 Sep 4
  • Murphy G. M., Jr., Hollander S. B., Rodrigues H. E., Kremer C., Schatzberg A. F. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry 2004; 61: 1163–9
  • Serretti A., Cusin C., Rossini D., Artioli P., Dotoli D., Zanardi R. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 36–40
  • Kim D. K., Lim S. W., Lee S., Sohn S. E., Kim S., Hahn C. G., et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport 2000; 11: 215–9
  • Ito K., Yoshida K., Sato K., Takahashi H., Kamata M., Higuchi H., et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res 2002; 111: 235–9
  • Yoshida K., Ito K., Sato K., Takahashi H., Kamata M., Higuchi H., et al. Influence of the serotonin transporter gene‐linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 383–6
  • Yu Y. W., Tsai S. J., Chen T. J., Lin C. H., Hong C. J. Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 2002; 7: 1115–9
  • Lee M. S., Lee H. Y., Lee H. J., Ryu S. H. Serotonin transporter promoter gene polymorphism and long‐term outcome of antidepressant treatment. Psychiatr Genet 2004; 14: 111–5
  • Kato M., Ikenaga Y., Wakeno M., Okugawa G., Nobuhara K., Fukuda T., et al. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int Clin Psychopharmacol 2005; 20: 151–6
  • Minov C., Baghai T. C., Schule C., Zwanzger P., Schwarz M. J., Zill P., et al. Serotonin‐2A‐receptor and ‐transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 2001; 303: 119–22
  • Benedetti F., Serretti A., Colombo C., Campori E., Barbini B., di Bella D., et al. Influence of a functional polymorphism within the promoter of the serotonin transporter gene on the effects of total sleep deprivation in bipolar depression. Am J Psychiatry 1999; 156: 1450–2
  • Benedetti F., Colombo C., Serretti A., Lorenzi C., Pontiggia A., Barbini B., et al. Antidepressant effects of light therapy combined with sleep deprivation are influenced by a functional polymorphism within the promoter of the serotonin transporter gene. Biol Psychiatry 2003; 54: 687–92
  • Baghai T. C., Schule C., Zwanzger P., Zill P., Ella R., Eser D., et al. No influence of a functional polymorphism within the serotonin transporter gene on partial sleep deprivation in major depression. World J Biol Psychiatry 2003; 4: 111–4
  • Gardner J. P., Fornal C. A., Jacobs B. L. Effects of sleep deprivation on serotonergic neuronal activity in the dorsal raphe nucleus of the freely moving cat. Neuropsychopharmacology 1997; 17: 72–81
  • Peters E. J., Slager S. L., McGrath P. J., Knowles J. A., Hamilton S. P. Investigation of serotonin‐related genes in antidepressant response. Mol Psychiatry 2004; 9: 879–89
  • Kraft J. B., Slager S. L., McGrath P. J., Knowles J. A., Hamilton S. P. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 2005; 58: 374–81
  • Hu X., Oroszi G., Chun J., Smith T. L., Goldman D., Schuckit M. A. An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 2005; 29: 8–16
  • Serretti A. Pharmacogenetics of antidepressants. Clinical Neuropsychiatry 2004; 1: 79–90
  • Lee H. J., Cha J. H., Ham B. J., Han C. S., Kim Y. K., Lee S. H., et al. Association between a G‐protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 2004; 4: 29–33
  • Serretti A., Lorenzi C., Cusin C., Zanardi R., Lattuada E., Rossini D., et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 2003; 13: 117–22
  • Zill P., Baghai T. C., Zwanzger P., Schule C., Minov C., Riedel M., et al. Evidence for an association between a G‐protein beta3‐gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893–7
  • Serretti A., Zanardi R., Cusin C., Rossini D., Lorenzi C., Smeraldi E. Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 2001; 11: 375–80
  • Serretti A., Zanardi R., Rossini D., Cusin C., Lilli R., Smeraldi E. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001; 6: 586–92
  • Yoshida K., Naito S., Takahashi H., Sato K., Ito K., Kamata M., et al. Monoamine oxidase: A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 1279–83
  • Muller D. J., Schulze T. G., Macciardi F., Ohlraun S., Gross M. M., Scherk H., et al. Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase A promoter. Pharmacopsychiatry 2002; 35: 157–8
  • Cusin C., Serretti A., Zanardi R., Lattuada E., Rossini D., Lilli R., et al. Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int J Neuropsychopharmacol 2002; 5: 27–35
  • Sato K., Yoshida K., Takahashi H., Ito K., Kamata M., Higuchi H., et al. Association between ‐1438G/A promoter polymorphism in the 5‐HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology 2002; 46: 136–40
  • Wu W. H., Huo S. J., Cheng C. Y., Hong C. J., Tsai S. J. Association study of the 5‐HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 2001; 44: 172–5
  • Serretti A., Zanardi R., Cusin C., Rossini D., Lilli R., Lorenzi C., et al. No association between dopamine D(2) and D(4) receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res 2001; 104: 195–203
  • Siffert W. Effects of the G protein beta 3‐subunit gene C825T polymorphism: should hypotheses regarding the molecular mechanisms underlying enhanced G protein activation be revised? Focus on A splice variant of the G protein beta 3‐subunit implicated in disease states does not modulate ion channels. Physiol Genomics 2003; 13: 81–4
  • de Kloet E. R., Joels M., Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–75
  • Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23: 477–501
  • Licinio J., O'Kirwan F., Irizarry K., Merriman B., Thakur S., Jepson R., et al. Association of a corticotropin‐releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican‐Americans. Mol Psychiatry 2004; 9: 1075–82
  • Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 2001; 62: 77–91
  • van Rossum E. C. F., Binder E. B., Mayer M., Koper J. W., Ising M., Modell S., et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry, In press
  • Binder E. B., Salyakina D., Lichtner P., Wochnik G. M., Ising M., Pütz B., et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319–25
  • Schiene‐Fischer C., Yu C. Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett 2001; 495: 1–6
  • Davies T. H., Ning Y. M., Sanchez E. R. A new first step in activation of steroid receptors: hormone‐induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 2002; 277: 4597–600
  • Scammell J. G., Denny W. B., Valentine D. L., Smith D. F. Overexpression of the FK506‐binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 2001; 124: 152–65
  • M. U., Shen L., Oshida T., Miyauchi J., Yamada M., Miyashita T. Identification of novel direct transcriptional targets of glucocorticoid receptor. Leukemia 2004; 18: 1850–6
  • Vermeer H., Hendriks‐Stegeman B. I., van der Burg B., van Buul‐Offers S. C., Jansen M. Glucocorticoid‐induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J Clin Endocrinol Metab 2003; 88: 277–84
  • Kramer M. S., Cutler N., Feighner J., Shrivastava R., Carman J., Sramek J. J., et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors [see comments]. Science 1998; 281: 1640–5
  • Skidgel R. A., Erdos E. G. The broad substrate specificity of human angiotensin I converting enzyme. Clin Exp Hypertens 1987; 9: 243–59
  • Jeunemaitre X. [Genetic polymorphisms in the renin‐angiotensin system]. Therapie 1998; 53: 271–7
  • Rigat B., Hubert C., Alhenc‐Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I‐converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–6
  • Arinami T., Li L., Mitsushio H., Itokawa M., Hamaguchi H., Toru M. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry 1996; 40: 1122–7
  • Baghai T. C., Schule C., Zwanzger P., Minov C., Schwarz M. J., de Jonge S., et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I‐converting enzyme gene on therapeutic outcome in affective disorders. Mol Psychiatry 2001; 6: 258–9
  • Baghai T. C., Schule C., Zill P., Deiml T., Eser D., Zwanzger P., et al. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett 2004; 363: 38–42
  • Baghai T. C., Schule C., Zwanzger P., Minov C., Zill P., Ella R., et al. Hypothalamic‐pituitary‐adrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I‐converting enzyme gene. Neurosci Let 2002; 328: 299–303
  • Chen B., Wang J. F., Sun X., Young L. T. Regulation of GAP‐43 expression by chronic desipramine treatment in rat cultured hippocampal cells. Biol Psychiatry 2003; 53: 530–7
  • Drigues N., Poltyrev T., Bejar C., Weinstock M., Youdim M. B. cDNA gene expression profile of rat hippocampus after chronic treatment with antidepressant drugs. J Neural Transm 2003; 110: 1413–36
  • Landgrebe J., Welzl G., Metz T., van Gaalen M. M., Ropers H., Wurst W., et al. Molecular characterisation of antidepressant effects in the mouse brain using gene expression profiling. J Psychiatr Res 2002; 36: 119–29
  • Palotas M., Palotas A., Puskas L. G., Kitajka K., Pakaski M., Janka Z., et al. Gene expression profile analysis of the rat cortex following treatment with imipramine and citalopram. Int J Neuropsychopharmacol 2004; 7: 401–13, Epub 2004 Ju1 26
  • Yamada M., Yamazaki S., Takahashi K., Nara K., Ozawa H., Yamada S., et al. Induction of cysteine string protein after chronic antidepressant treatment in rat frontal cortex. Neurosci Lett 2001; 301: 183–6
  • Yamada M., Yamazaki S., Takahashi K., Nishioka G., Kudo K., Ozawa H., et al. Identification of a novel gene with RING‐H2 finger motif induced after chronic antidepressant treatment in rat brain. Biochem Biophys Res Commun 2000; 278: 150–7
  • Yamada M., Higuchi T. Antidepressant‐elicited changes in gene expression: remodeling of neuronal circuits as a new hypothesis for drug efficacy. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 999–1009
  • Palotas A., Puskas L. G., Kitajka K., Palotas M., Molnar J., Pakaski M., et al. Altered response to mirtazapine on gene expression profile of lymphocytes from Alzheimer's patients. Eur J Pharmacol 2004; 497: 247–54
  • Palotas A., Puskas L. G., Kitajka K., Palotas M., Molnar J., Pakaski M., et al. The effect of citalopram on gene expression profile of Alzheimer lymphocytes. Neurochem Res 2004; 29: 1563–70
  • Harrison P. J., Weinberger D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 110: 40–68; image 5
  • Kelsoe J. R., Spence M. A., Loetscher E., Foguet M., Sadovnick A. D., Remick R. A., et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci U S A 2001; 98: 585–90, Epub 2001 Jan 9
  • Lachman H. M., Kelsoe J. R., Remick R. A., Sadovnick A. D., Rapaport M. H., Lin M., et al. Linkage studies suggest a possible locus for bipolar disorder near the velo‐cardiofacial syndrome region on chromosome 22. Am J Med Genet 1997; 74: 121–8
  • Niculescu A. B., 3rd., Segal D. S., Kuczenski R., Barrett T., Hauger R. L., Kelsoe J. R. Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000; 4: 83–91
  • Barrett T. B., Hauger R. L., Kennedy J. L., Sadovnick A. D., Remick R. A., Keck P. E., et al. Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 2003; 8: 546–57, 116
  • Barden N., Harvey M., Shink E., Temblay M., Gagné B., Raymond C., et al. Identification and characterisation of a gene predisposing to both bipolar and unipolar affective disorders. Am J Hum Genet 2004; 130B: 122
  • Bass N., McQuillin A., Lawrence J., Choudhury A., Puri V., Kalsi G., et al. Evidence of allelic association of bipolar disorder with two genes P2RX7 and AY070435 6 MB apart on 12Q24. Am J Human Genet 2005; 138B: 74
  • Arranz M. J., Munro J., Birkett J., Bolonna A., Mancama D., Sodhi M., et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 355: 1615–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.