4,582
Views
40
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

The effects of medications on circulating levels of cardiac natriuretic peptides

, , , &
Pages 242-260 | Published online: 08 Jul 2009

References

  • Clerico A., Recchia F. A., Passino C., Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol 2006; 290: H17–29
  • Potter L. R., Abbey‐Hosch S., Dickey D. M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate‐dependent signaling functions. Endocr Rev 2006; 27: 47–72
  • Edwards B. S., Zimmerman R. S., Schwab T. R., Heublein D. M., Burnett J. C., Jr. Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 1988; 62: 191–5
  • Kinnunen P., Vuolteenaho O., Ruskoaho H. Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: effect of stretching. Endocrinology 1993; 132: 1961–70
  • Davis M. E., Richards A. M., Nicholls M. G., Yandle T. G., Frampton C. M., Troughton R. W. Introduction of metoprolol increases plasma B‐type cardiac natriuretic peptides in mild, stable heart failure. Circulation 2006; 113: 977–85
  • Luchner A., Schunkert H. Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovasc Res 2004; 63: 443–9
  • Nakamura M., Kawata Y., Yoshida H., Arakawa N., Koeda T., Ichikawa T., et al. Relationship between plasma atrial and brain natriuretic peptide concentrations and hemodynamic parameters during percutaneous transvenous mitral valvulotomy in patients with mitral stenosis. Am Heart J 1992; 124: 1283–8
  • Yoshimura M., Yasue H., Okumura K., Ogawa H., Jougasaki M., Mukoyama M., et al. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 1993; 87: 464–9
  • Larsen A. I., Dickstein K., Ahmadi N. S., Aarsland T., Kvaløy J. T., Hall C. The effect of altering haemodynamics on the plasma concentrations of natriuretic peptides in heart failure. Eur J Heart Fail 2006; 8: 628–33
  • Yandle T., Fisher S., Livesey J., Espiner E., Richards M., Nicholls G. Exponential increase in clinical use of plasma brain natriuretic peptide (BNP) assays. N Z Med J 2004; 117: U956
  • Lijnen P., Hespel P., Fagard R., Staessen J., Goossens W., Lissens W., et al. Plasma atrial natriuretic peptide and the renin‐aldosterone system during long‐term administration of the diuretic xipamide in man. Eur J Clin Pharmacol 1989; 36: 111–17
  • Chalmers J. P., Wing L. M. H., West M. J., Bune A. J. C., Elliott J. M., Morris M. J., et al. Effects of enalapril and hydrochlorothiazide on blood pressure, renin‐angiotensin system, and atrial natriuretic factor in essential hypertension: a double blind factorial cross‐over study. Aust NZ J Med 1986; 16: 475–80
  • Schunkert H., Hense H. W., Brockel U., Luchner A., Muscholl M., Holmer S. R., et al. Differential effects of antihypertensive drugs on neurohormonal activation: insights from a population‐based sample. J Intern Med 1998; 244: 109–19
  • Paterna S., Di Pasquale P., Parrinello G., Fornaciari E., Di Gaudio F., Fasullo S., et al. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high‐dose furosemide and hypertonic saline solution versus high‐dose furosemide alone in refractory congestive heart failure. J Am Coll Cardiol 2005; 45: 1997–2003
  • Johnson W., Omland T., Hall C., Lucas C., Myking O. L., Collins C., et al. Neurohormonal activation rapidly decreases after intravenous therapy with diuretics and vasodilators for class IV heart failure. J Am Coll Cardiol 2002; 39: 1623–9
  • Starklint J., Bech J. N., Nyvad O., Jensen P., Pedersen E. B. Increased urinary aquaporin‐2 excretion in response to furosemide in patients with chronic heart failure. Scand J Clin Lab Invest 2006; 66: 55–66
  • Rousseau M. F., Gurné O., Duprez D., Van Mieghem W., Robert A., Ahn S., et al. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure. J Am Coll Cardiol 2002; 40: 1596–601
  • Tsutamoto T., Wada A., Maeda K., Mabuchi N., Hayashi M., Tsutsui T., et al. Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol 2001; 37: 1228–33
  • Feola M., Menardi E., Ribichini F., Vado A., Deorsola A., Ferrero V., et al. Effects of the addition of a low dose of spironolactone on brain natriuretic peptide plasma level and cardiopulmonary function in patients with moderate congestive heart failure. Med Sci Monit 2003; 9: CR341–5
  • Macdonald J. E., Kennedy N., Struthers A. D. Effects of spironolactone on endothelial function, vascular angiotensin converting enzyme activity, and other prognostic markers in patients with mild heart failure already taking optimal treatment. Heart 2004; 90: 765–70
  • Roongsritong C., Sutthiwan P., Bradley J., Simoni J., Power S., Meyerrose G. E. Spironolactone improves diastolic function in the elderly. Clin Cardiol 2005; 28: 484–7
  • Kinugawa T., Ogino K., Kato M., Furuse Y., Shimoyama M., Mori M., et al. Effects of spironolactone on exercise capacity and neurohormonal factors in patients with heart failure treated with loop diuretics and angiotensin‐converting enzyme inhibitor. Gen Pharmacol 1998; 31: 93–9
  • Nakaoka H., Kitahara Y., Amano M., Imataka K., Fujii J., Ishibashi M., et al. Effect of β‐adrenergic receptor blockade on atrial natriuretic peptide in essential hypertension. Hypertension 1987; 10: 221–5
  • Thamsborg G., Sykulski R., Larsen J., Storm T., Keller N. Effect of β1‐adrenoceptor blockade on plasma levels of atrial natriuretic peptide during exercise in normal man. Clin Physiol 1987; 7: 313–8
  • Bouissou P., Galen F‐X., Richalet J. P., Lartigue M., Devaux F., Dubray C., et al. Effects of propranolol and pindolol on plasma ANP levels in humans at rest and during exercise. Am J Physiol 1989; 257: R259–64
  • Donckier J. E., De Coster P. M., Buysschaert M., Van Hoof M., Cauwe F. M., Robert A., et al. Effect of beta‐adrenergic blockade on plasma atrial natriuretic factor and cardiac volumes during exercise in normal men. Am J Cardiol 1989; 63: 1000–2
  • Deray G., Berlin I., Maistre G., Martinez F., Legrand S., Carayon A., et al. Beta‐adrenoceptor blockade potentiates exercise‐induced release of atrial natriuretic peptide. Eur J Clin Pharmacol 1990; 38: 363–6
  • Tsai R‐C., Yamaji T., Ishibashi M., Takaku F., Hsu S‐T., Yeh S‐J., et al. Role of atrial natriuretic peptide in hemoconcentration during exercise. Am J Hypertens 1990; 3: 833–7
  • Colantonio D., Casale R., Desiati P., Giandomenico G., Bucci V., Pasqualetti P. Short‐term effects of atenolol and nifedipine on atrial natriuretic peptide, plasma renin activity, and plasma aldosterone in patients with essential hypertension. J Clin Pharmacol 1991; 31: 238–42
  • Kohno M., Yokokawa K., Yasunari K., Murakawa K., Kurihara N., Takeda T. Acute effects of α‐ and β‐adrenoceptor blockade on plasma atrial natriuretic peptides during exercise in elderly patients with mild hypertension. Chest 1991; 99: 847–54
  • Berlin I., Lechat P., Deray G., Landault C., Maistre G., Chermat V., et al. Beta‐adrenoceptor blockade potentiates acute exercise‐induced release of atrial natriuretic peptide by increasing atrial diameter in normotensive healthy subjects. Eur J Clin Pharmacol 1993; 44: 127–33
  • Riley M., Elborn J. S., Onuoha G., Erwin C., Shaw C., Khan M. M., et al. Effect of beta‐adrenoceptor blockade on atrial natriuretic peptide levels during exercise in angina pectoris. Br J Clin Pharmacol 1993; 35: 209–12
  • Elijovich F., Laffer C. L., Schiffrin E. L. The effects of atenolol and zofenopril on plasma atrial natriuretic peptide are due to their interactions with target organ damage of essential hypertensive patients. J Hum Hypertens 1997; 11: 313–9
  • Luchner A., Burnett J. C., Jr., Jougasaki M., Hense H‐W., Riegger G. A. J., Schunkert H. Augmentation of the cardiac natriuretic peptides by beta‐receptor antagonism: evidence from a population‐based study. J Am Coll Cardiol 1998; 32: 1839–44
  • Papadopoulos C. L., Kokkas B., Kotridis P., Karamouzis M., Haldoupi M., Platis A., et al. Effect of the β1‐blocker/β2‐agonist celiprolol on atrial natriuretic peptide plasma levels in hypertensive patients. Cardiovasc Drugs Ther 1998; 12: 345–6
  • Deary A. J., Schumann A. L., Murfet H., Haydock S., Foo R. S., Brown M. J. Influence of drugs and gender on the arterial pulse wave and natriuretic peptide secretion in untreated patients with essential hypertension. Clin Sci 2002; 103: 493–9
  • van den Meiracker A. H., Lameris T. W., van de Ven L. L. M., Boomsma F. Increased plasma concentration of natriuretic peptides by selective β1‐blocker bisoprolol. J Cardiovasc Pharmacol 2003; 42: 462–8
  • Marie P‐Y., Mertes P. M., Hassan‐Sebbag N., de Talence N., Djaballah K., Djabballah W., et al. Exercise release of cardiac natriuretic peptides is markedly enhanced when patients with coronary artery disease are treated medically by beta‐blockers. J Am Coll Cardiol 2004; 43: 353–9
  • Olsen M. H., Wachtell K., Tuxen C., Fossum E., Bang L. E., Hall C., et al. Opposite effects of losartan and atenolol on natriuretic peptides in patients with hypertension and left ventricular hypertrophy: a LIFE substudy. J Hypertens 2005; 23: 1083–90
  • Dahlof B., Zanchetti A., Diez J., Nicholls M. G., Yu C‐M., Barrios V., et al. Effects of losartan and atenolol on left ventricular mass and neurohormonal profile in patients with essential hypertension and left ventricular hypertrophy. J Hypertens 2002; 20: 1855–64
  • Davies J., Carr E., Band M., Morris A., Struthers A. Do losartan and atenolol have differential effects on BNP and central haemodynamic parameters?. J Renin Angiotensin Aldosterone Syst 2005; 6: 151–3
  • Omvik P., Lund‐Johansen P., Myking O. Effects of carvedilol on atrial natriuretic peptide, catecholamines, and hemodynamics in hypertension at rest and during exercise. J Cardiovasc Pharmacol 1992; 19(Suppl 1)S90–6
  • Böhlen L. M., de Courten M., Hafezi F., Shaw S., Riesen W., Weidmann P. Insulin sensitivity and atrial natriuretic factor during β‐receptor modulation with celiprolol in normal subjects. J Cardiovasc Pharmacol 1994; 23: 877–83
  • Kantola I., Tarssanen L., Scheinin M., Ruskoaho H., Vinamäki O., Kaila T. β‐blockade, atrial natriuretic peptide and exercise. Int J Clin Pharmacol Ther 1996; 34: 12–16
  • Legault L., van Nguyen P., Holliwell D. L., Leenen F. H. H. Hemodynamic and plasma atrial natriuretic factor responses to cardiac volume loading in young versus older normotensive humans. Can J Physiol Pharmacol 1992; 70: 1549–54
  • Shields P. P., Glembotski C. C. Regulation of atrial natriuretic factor‐(99‐126) secretion from neonatal rat primary atrial cultures by activators of protein kinases A and C. J Biol Chem 1989; 264: 9322–8
  • Yoshimoto T., Naruse M., Tanabe A., Naruse K., Seki T., Imaki T., et al. Potentiation of natriuretic peptide action by the β‐adrenergic blocker carvedolol in hypertensive rats: a new antihypertensive mechanism. Endocrinology 1998; 139: 81–8
  • Ohta Y., Watanabe K., Nakazawa M., Tamamoto T., Ma M., Fuse K., et al. Carvedolol enhances atrial and brain natriuretic peptide mRNA expression and release in rat heart. J Cardiovasc Pharmacol 2000; 36(Suppl 2)S19–23
  • Sanderson J. E., Chan W. W. M., Hung Y. T., Chan S. K. W., Shum I. O. L., Raymond K., et al. Effect of low dose β blockers on atrial and ventricular (B type) natriuretic factor in heart failure: a double blind, randomised comparison of metoprolol and a third generation vasodilating β blocker. Br Heart J 1995; 74: 502–7
  • The RESOLVD Investigators. Effects of metoprolol CR in patients with ischemic and dilated cardiomyopathy. The Randomized Evaluation of Strategies for Left Ventricular Dysfunction Pilot Study. Circulation 2000; 101: 378–84
  • Yoshikawa T., Handa S., Anzai T., Nishimura H., Baba A., Akaishi M., et al. Early reduction of neurohumoral factors plays a key role in mediating the efficacy of β‐blocker therapy for congestive heart failure. Am Heart J 1996; 131: 329–36
  • Hara Y., Hamada M., Shigematsu Y., Suzuki M., Kodama K., Kuwahara T., et al. Effect of beta‐blocker on left ventricular function and natriuretic peptides in patients with chronic heart failure treated with angiotensin‐converting enzyme inhibitor. Jpn Circ J 2000; 64: 365–9
  • Kawai K., Hata K., Takaoka H., Kawai H., Yokoyama M. Plasma brain natriuretic peptide as a novel therapeutic indicator in idiopathic dilated cardiomyopathy during β‐blocker therapy: a potential of hormone‐guided treatment. Am Heart J 2001; 141: 925–32
  • Gabrielli O., Puyó A. M., De Rosa A., Armando I., Barontini M., Levin G. Atenolol improves ventricular function without changing plasma noradrenaline but decreasing plasma atrial natriuretic factor in chronic heart failure. Auton Autacoid Pharmacol 2002; 22: 261–8
  • Hara Y., Hamada M., Ohtsuka T., Ogimoto A., Saeki H., Matsunaka T., et al. Comparison of treatment effects of bevantolol and metoprolol on cardiac function and natriuretic peptides in patients with dilated cardiomyopathy. Heart Vessels 2002; 17: 53–6
  • Rahman M. A., Hara K., Daly P. A., Wigle E. D., Floras J. S. Reductions in muscle sympathetic nerve activity after long term metoprolol for dilated cardiomyopathy: preliminary observations. Br Heart J 1995; 74: 431–6
  • Stanek B., Frey B., Hülsmann M., Berger R., Sturm B., Strametz‐Juranek J., et al. Prognostic evaluation of neurohumoral plasma levels before and during beta‐blocker therapy in advanced left ventricular dysfunction. J Am Coll Cardiol 2001; 38: 436–42
  • Ohtsuka T., Hamada M., Saeki H., Ogimoto A., Hiasa G., Hara Y., et al. Comparison of effects of carvedilol versus metoprolol on cytokine levels in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 2002; 89: 996–9
  • Persson H., Andréasson K., Kahan T., Eriksson S. V., Tidgren B., Hjemdahl P., et al. Neurohormonal activation in heart failure after acute myocardial infarction treated with beta‐receptor antagonists. Eur J Heart Fail 2002; 4: 73–82
  • Fung J. W. H., Yu C. M., Yip G., Chan S., Yandle T. G., Richards A. M., et al. Effect of beta blockade (carvedilol or metoprolol) on activation of the renin‐angiotensin‐aldosterone system and natriuretic peptides in chronic heart failure. Am J Cardiol 2003; 92: 406–10
  • Sliwa K., Norton G. R., Kone N., Candy G., Kachope J., Woodiwiss A. J., et al. Impact of initiating carvedilol before angiotensin converting enzyme inhibitor therapy on cardiac function in newly diagnosed heart failure. J Am Coll Cardiol 2004; 44: 1825–30
  • Takeda Y., Fukutomi T., Suzuki S., Yamamoto K., Ogata M., Kondo H., et al. Effects of carvedilol on plasma B‐type natriuretic peptide concentration and symptoms in patients with heart failure and preserved ejection fraction. Am J Cardiol 2004; 94: 448–53
  • Yoshizawa A., Yoshikawa T., Nakamura I., Satoh T., Moritani K., Suzuki M., et al. Brain natriuretic peptide response is heterogenous during β‐blocker therapy for congestive heart failure. J Card Fail 2004; 10: 310–5
  • Frantz R. P., Olson L. J., Grill D., Moualla S. K., Nelson S. M., Nobrega T. P., et al. Carvedilol therapy is associated with a sustained decline in brain natriuretic peptide levels in patients with congestive heart failure. Am Heart J 2005; 149: 541–7
  • Fujimura M., Yasumura Y., Ishida Y., Nakatani S., Komamura K., Yamagishi M., et al. Improvement in left ventricular function in response to carvedolol is accompanied by attenuation of neurohumoral activation in patients with dilated cardiomyopathy. J Card Fail 2000; 6: 3–10
  • Hara Y., Hamada M., Shigematsu Y., Murakami B., Hiwada K. Beneficial effect of β‐adrenergic blockade on left ventricular function in haemodialysis patients. Clin Sci 2001; 101: 219–25
  • Dessi‐Fulgheri P., Motolese M., Di Noto G., Delfino D., Giacchetti G., Boria C., et al. Blunting of atrial natriuretic factor response to volume expansion by benazepril in hypertensive patients. J Hypertens 1989; 7(suppl)S300–1
  • Fioretto P., Muollo B., Ben G. P., Mollo F., Frigato F., Opocher G., et al. Resistance to the actions of atrial natriuretic factor in insulin‐dependent diabetic hypertensives and improvement with angiotensin converting enzyme inhibitor treatment. J Hypertens 1991; 9(suppl 6)S262–3
  • Januszewicz A., Lapinski M., Stepniakowski K., Szczypaczewska M., Kowalik‐Borowka E., Chlebus M., et al. The exercise‐induced rise in atrial natriuretic factor is reduced by chronic angiotensin converting enzyme inhibition in patients with primary hypertension. J Hypertens 1991; 9(suppl 6)S386–7
  • Kuriyama S., Tokutome G., Kimura Y., Shimada T., Nakamura K., Tomonari H., et al. Atrial natriuretic peptide lowering effect of antihypertensives in patients with essential hypertension. Am J Hypertens 1991; 4: 289–90
  • Kohno M., Yokokawa K., Yasunari K., Kano H., Minami M., Hanehira T., et al. Changes in plasma cardiac natriuretic peptides concentrations during 1 year treatment with angiotensin‐converting enzyme inhibitor in elderly hypertensive patients with left ventricular hypertrophy. Int J Clin Pharmacol Ther 1997; 35: 38–42
  • Kohno M., Minami M., Kano H., Yasunari K., Maeda K., Hanehira T., et al. Effect of angiotensin‐converting enzyme inhibitor on left ventricular parameters and circulating brain natriuretic peptide in elderly hypertensives with left ventricular hypertrophy. Metabolism 2000; 49: 1356–60
  • Yalcin F., Aksoy F. G., Muderrisoglu H., Sabah I., Garcia M. J., Thomas J. D. Treatment of hypertension with perindopril reduces plasma atrial natriuretic peptide levels, left ventricular mass, and improves echocardiographic parameters of diastolic function. Clin Cardiol 2000; 23: 437–41
  • Anan F., Takahashi N., Ooie T., Hara M., Yoshimatsu H., Saikawa T. Candesartan, an angiotensin II receptor blocker, improves left ventricular hypertrophy and insulin resistance. Metabolism 2004; 53: 777–81
  • Anan F., Takahashi N., Ooie T., Yufu K., Hara M., Nakagawa M., et al. Effects of valsartan and perindopril combination therapy on left ventricular hypertrophy and aortic arterial stiffness in patients with essential hypertension. Eur J Clin Pharmacol 2005; 61: 353–9
  • Crozier I. G., Nicholls M. G., Ikram H., Espiner E. A., Yandle T. G. Atrial natriuretic peptide levels in congestive heart failure in man before and during converting enzyme inhibition. Clin Exper Pharmacol Physiol 1989; 16: 417–24
  • Kettunen R. V. J., Vuolteenaho O., Ukkola O., Lilja M., Jounela A., Kesäniemi A., et al. Effects of early administration of enalapril on radionuclide left ventricular ejection fraction and plasma N‐terminal atrial natriuretic peptide after acute myocardial infarction. Am J Cardiol 1994; 73: 865–7
  • Yoshimura M., Yasue H., Tanaka H., Kikuta K., Sumida H., Kato H., et al. Responses of plasma concentrations of A type natriuretic peptide and B type natriuretic peptide to alacepril, an angiotensin‐converting enzyme inhibitor, in patients with congestive heart failure. Br Heart J 1994; 72: 528–33
  • Dohmen H. J. M., Dunselman P. H. J. M., Poole‐Wilson P. A. Comparison of captopril and ibopamine in mild to moderate heart failure. Heart 1997; 78: 285–90
  • Inoko M., Fujita M., Nakae I., Tamaki S., Watanuki M., Hashimoto T., et al. Effect of angiotensin‐converting enzyme inhibition on sympathetic tone in patients with mild to moderate heart failure. Jpn Circ J 2001; 65: 395–8
  • Kinugawa T., Osaki S., Kato M., Ogino K., Shimoyama M., Tomikura Y., et al. Effects of the angiotensin‐converting enzyme inhibitor alacepril on exercise capacity and neurohormonal factors in patients with mild‐to‐moderate heart failure. Clin Exper Pharmacol Physiol 2002; 29: 1060–5
  • Latini R., Masson S., Anand I., Judd D., Maggioni A. P., Chiang Y‐T., et al. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure. The Valsartan Heart Failure Trial (Val‐HeFT). Circulation 2002; 106: 2454–8
  • Maggioni A. P., Anand I., Gottlieb S. O., Latini R., Tognoni G., Cohn J. N., et al. Effects of valsartan on morbidity and mortality in patients with heart failure not receiving angiotensin‐converting enzyme inhibitors. J Am Coll Cardiol 2002; 40: 1414–21
  • Sheth T., Parker T., Block A., Hall C., Adam A., Pfeffer M. A., et al. Comparison of the effects of omapatrilat and lisinopril on circulating neurohormones and cytokines in patients with chronic heart failure. Am J Cardiol 2002; 90: 496–500
  • Yoshimura M., Mizuno Y., Nakayama M., Sakamoto T., Sugiyama S., Kawano H., et al. B‐type natriuretic peptide as a marker of the effects of enalapril in patients with heart failure. Am J Med 2002; 112: 716–20
  • Mitrovic V., Willenbrock R., Miric M., Seferovic P., Spinar J., Dabrowski M., et al. Acute and 3‐month treatment effects of candesartan cilexetil on hemodynamics, neurohormones, and clinical symptoms in patients with congestive heart failure. Am Heart J 2003; 145: e14
  • Krum H., Carson P., Farsang C., Maggioni A. P., Glazer R. D., Aknay N., et al. Effect of valsartan added to background ACE inhibitor therapy in patients with heart failure: results from Val‐HeFT. Eur J Heart Fail 2004; 6: 937–45
  • Shinohara H., Fukuda N., Soeki T., Sakabe K., Onose Y., Tamura Y. Effects of angiotensin II receptor antagonists on [123] metaiodobenzylguanidine myocardial imaging findings and neurohumoral factors in chronic heart failure. Heart Vessels 2002; 17: 47–52
  • Falcao L. M., Pinto F., Ravara L., van Zwieten P. A. BNP and ANP as diagnostic and predictive markers in heart failure with left ventricular systolic dysfunction. J Renin Angiotensin Aldosterone Syst 2004; 5: 121–9
  • Kasama S., Toyama T., Kumakura H., Takayama Y., Ichikawa S., Suzuki T., et al. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril. Eur J Nucl Med Mol Imaging 2005; 32: 964–71
  • Kasama S., Toyama T., Hatori T., Sumino H., Kumakura H., Takayama Y., et al. Comparative effects of valsartan and enalapril on cardiac sympathetic nerve activity and plasma brain natriuretic peptide in patients with congestive heart failure. Heart 2006; 92: 625–30
  • Brunner‐La Rocca H. P., Weilenmann D., Kiowski W., Maly F. E., Candinas R., Follath F. Within‐patient comparison of effects of different dosages of enalapril on functional capacity and neurohormone levels in patients with chronic heart failure. Am Heart J 1999; 138: 654–62
  • The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–35
  • Yan R. T., White M., Yan A. T., Yusuf S., Rouleau J. L., Maggioni A. P., et al. Usefulness of temporal changes in neurohormones as markers of ventricular remodeling and prognosis in patients with left ventricular systolic dysfunction and heart failure receiving either candesartan or enalapril or both. Am J Cardiol 2005; 96: 698–704
  • Leskinen H., Vuolteenaho O., Ruskoaho H. Combined inhibition of endothelin and angiotensin II receptors blocks volume load‐induced cardiac hormone release. Circ Res 1997; 80: 114–23
  • Rademaker M. T., Charles C. J., Espiner E. A., Frampton C. M., Nicholls M. G., Richards A. M. Combined inhibition of angiotensin II and endothelin suppresses the brain natriuretic peptide response to developing heart failure. Clin Sci 2004; 106: 569–76
  • Haufe M. C., Gerzer R., Weil J., Ernst J. E., Theisen K. Verapamil impairs secretion of stimulated atrial natriuretic factor in humans. J Am Coll Cardiol 1988; 11: 1199–203
  • Shima J., Ogihara T., Hara H., Iinuma K., Kumahara Y. Effects of calcium antagonists on the secretion of atrial natriuretic peptide in normal volunteers. Curr Ther Res 1987; 42: 115–23
  • Shamiss A., Peleg E., Rosenthal T., Ezra D. The role of atrial natriuretic peptide in the diuretic effect of Ca2+ entry blockers. Eur J Pharmacol 1993; 233: 113–7
  • Fioretto P., Frigato F., Velussi M., Riva F., Muollo B., Carraro A., et al. Effects of angiotensin converting enzyme inhibitors and calcium antagonists on atrial natriuretic peptide release and action and on albumin excretion rate in hypertensive insulin‐dependent diabetic patients. Am J Hypertens 1992; 5: 837–46
  • Antonicelli R., Tomassini P. F., Galletti P., Gambini C., Marini M., Amadio L., et al. Age‐related antihypertensive and haemodynamic effects of verapamil ST: clinical results and effects on atrial natriuretic peptide. Eur J Clin Pharmacol 1990; 39(suppl 1)S29–33
  • Van Bortel L. M. A. B., Schiffers P. M. H., Böhm R. O. B., Mooij J. M. V., Rahn K. H., Struyker Boudier H. A. J. The influence of chronic treatment with verapamil on plasma atrial natriuretic peptide levels in young and elderly hypertensive patients. Eur J Clin Pharmacol 1990; 39(suppl 1)S39–40
  • Buckley J. W., Hedner T., Masotto C., Posvar E., Negro‐Villar A., Cubeddu L. X. Comparative effects of verapamil and volume overload on atrial natriuretic factors and the renin‐angiotensin aldosterone‐vasopressin system. J Clin Pharmacol 1992; 32: 1120–7
  • Kokkas B., Kotridis P., Karamouzis M., Kanonidis I., Sakadamis G., Dadous G., et al. Plasma atrial natriuretic peptide levels in essential hypertension after treatment with verapamil. Eur J Drug Metab Pharmacokinet 2002; 27: 45–8
  • Cappuccio F. P., Markandu N. D., Sagnella G. A., Singer D. R., Buckley M. G., Miller M. A., et al. Effects of amlodipine on urinary sodium excretion, renin‐angiotensin‐aldosterone system, atrial natriuretic peptide and blood pressure in essential hypertension. J Hum Hypertens 1991; 5: 115–9
  • Deary A. J., Schumann A. L., Murfet H., Haydock S. F., Foo R. S‐Y., Brown M. J. Double‐blind, placebo‐controlled crossover comparison of five classes of antihypertensive drugs. J Hypertens 2002; 20: 771–7
  • Wijeysundera H. C., Hansen M. S., Stanton E., Cropp A. S., Hall C., Dhalla N. S., et al. Neurohormones and oxidative stress in nonischemic cardiomyopathy: relationship to survival and the effect of treatment with amlodipine. Am Heart J 2003; 146: 291–7
  • Stokes G. S., Monaghan J. C., Berman K., Ryan M., Campbell D. J. Double‐blind crossover study of the interaction between perindopril and amlodipine on blood pressure and hormones related to fluid and electrolyte balance in patients with essential hypertension. J Hum Hypertens 1998; 12: 129–34
  • Lennox S., Penney M., Woodhouse K. Plasma atrial natriuretic peptide levels in elderly hypertensives: effects of blood pressure reduction with amlodipine. Arch Gerontol Geriatr 1994; 19: 223–7
  • Shigematsu S., Yamada T., Aizawa T., Takasu N., Shimizu Z. Differential effects of nifedipine on plasma atrial natriuretic peptide in normal subjects and hypertensive patients. Angiology 1992; 43: 40–6
  • Ringqvist I., Hedner T., Leppert J., Niklasson U., Edvinsson L. Effects of cold pressor test on circulating atrial natriuretic peptide 99‐126 (ANP) in patients with Raynaud's phenomenon and influence of treatment with magnesium sulphate and nifedipine. Clin Physiol 1993; 13: 271–80
  • Phillips R. A., Ardeljan M., Shimabukuro S., Goldman M. E., Garbowit D. L., Eison H. B., et al. Normalization of left ventricular mass and associated changes in neurohormones and atrial natriuretic peptide after 1 year of sustained nifedipine therapy for severe hypertension. J Am Coll Cardiol 1991; 17: 1595–602
  • Maki N., Yoshiyama M., Omura T., Yoshimura T., Kawarabayashi T., Sakamoto K., et al. Effect of diltiazem on cardiac function assessed by echocardiography and neurohumoral factors after reperfused myocardial infarction without congestive heart failure. Cardiovasc Drugs Ther 2001; 15: 493–9
  • Erbas B., Ozdemir O., Pasaoglu I., Ugur O., Varoglu E., Koray Z., et al. Short‐ and long‐term effects of felodipine on circulating endothelin and atrial natriuretic peptide levels in essential hypertension. Nephron 1993; 63: 363–4
  • Smith R. F., Germanson T., Judd D., Wong M., Ziesche S., Anand I. S., et al. Plasma norepinephrine and atrial natriuretic peptide in heart failure: influence of felodipine in the third Vasodilator Heart Failure Trial. V‐HeFT III investigators. J Card Fail 2000; 6: 97–107
  • Lehnert H., Schmitz H., Preuss K., Küstner E., Krause U., Beyer J. Effects of nitrendipine on blood pressure, renin‐angiotensin‐system and atrial natriuretic peptide in hypertensive type 1 diabetic patients. Horm Metab Res 1993; 25: 24–8
  • Keller N., Sykulski R., Thamsborg G., Storm T., Larsen J. Changes in atrial natriuretic factor during preload reduction with nitroglycerin in patients with congestive heart failure. Clin Physiol 1988; 8: 57–64
  • Webster M. W. I., Sharpe D. N., Coxon R., Murphy J., Hannan S., Nicholls M. G., et al. Effect of reducing atrial pressure on atrial natriuretic factor and vasoactive hormones in congestive heart failure secondary to ischemic and nonischemic dilated cardiomyopathy. Am J Cardiol 1989; 63: 217–21
  • Lewis B. S., Makhoul N., Dakak N., Flugelman M. Y., Yechiely H., Halon D. A., et al. Atrial natriuretic peptide in severe heart failure: response to controlled changes in atrial pressures during intravenous nitroglycerin therapy. Am Heart J 1992; 124: 1009–16
  • Tsutamoto T., Kinoshita M., Nakae I., Maeda Y., Wada A., Yabe T., et al. Absence of hemodynamic tolerance to nicorandil in patients with severe congestive heart failure. Am Heart J 1994; 127: 866–73
  • Ferreira A., Bettencourt P., Dias P., Pestana M., Serrao P., Soares‐da‐Silva P., et al. Neurohormonal activation, the renal dopaminergic system and sodium handling in patients with severe heart failure under vasodilator therapy. Clin Sci 2001; 100: 557–66
  • Uehlinger D. E., Zaman T., Weidmann P., Shaw S., Gnadinger M. P. Pressure dependence of atrial natriuretic peptide during norepinephrine infusion in humans. Hypertension 1987; 10: 249–53
  • Tomiyama T., Baba T., Murabayashi S., Ishizaki T. Acute effect of an alpha 1‐adrenoceptor antagonist on urinary sodium excretion, plasma atrial natriuretic peptide, arginine vasopressin, and the renin‐aldosterone system in healthy subjects. Eur J Clin Pharmacol 1992; 43: 17–21
  • Semplicini A., Valle R., Serena L., Fazari G., Fontebasso A., Gebbin A., et al. Long‐term alpha‐1 adrenoceptor blockade does not affect plasma atrial natriuretic peptide in hypertensive patients. Horm Metab Res 1994; 26: 207–8
  • Valle R., Semplicini A., Serena L., Gebbin A., Fontebasso A., Gerardi G., et al. Pressure and metabolic effects of terazosin in essential hypertension. Cardiologia 1994; 39: 421–4
  • Kotridis P., Kokkas B., Kyriakou P., Karamouzis M., Salpigidis G., Karantona C., et al. Plasma atrial natriuretic peptide in essential hypertension after treatment with terazocin. Eur J Drug Metab Pharmacokinet 2003; 28: 143–6
  • Tsutamoto T., Wada A., Maeda K., Hisanaga T., Fukai D., Maeda Y., et al. Digitalis increases brain natriuretic peptide in patients with severe congestive heart failure. Am Heart J 1997; 134: 910–6
  • Kobusiak‐Prokopowicz M., Swidnicka‐Szuszkowska B., Mysiak A. Effect of digoxin on atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and cyclic 3', 5'‐guanosine monophosphate (cGMP) in patients with chronic congestive heart failure. Pol Arch Med Wewn 2001; 105: 475–82
  • Miller W. L., Bailey K. R., Weston S. A., Burnett J. C., Jr., Rodeheffer R. J. Hemodynamic and plasma atrial natriuretic peptide responses to acute digitalis therapy in patients with normal and impaired left ventricular function. Eur J Heart Fail 2002; 4: 63–72
  • Bloch K. D., Zamir N., Lichtstein D., Seidman C. E., Seidman J. G. Ouabain induces secretion of proatrial natriuretic factor by rat atrial myocytes. Am J Physiol 1988; 255: E383–7
  • Morise T., Takeuchi Y., Okamoto S., Takeda R. Stimulation of atrial natriuretic peptide secretion and synthesis by Na‐K‐ATPase inhibitors. Biochem Biophys Res Commun 1991; 176: 875–81
  • Stangl K., Baumann G., Gerzer R., Weil J. Acute effects of beta‐adrenergic stimulation with dobutamine on the plasma levels of atrial natriuretic peptide and cyclic guanosine monophosphate in patients with chronic heart failure. Eur Heart J 1991; 12: 917–23
  • La Vecchia L., Bottero M., Centofante P., Bedogni F., Ometto R., Cera A., et al. Acute changes in the hemodynamic profile and circulating levels of atrial natriuretic peptide induced by dobutamine in severe heart failure. G Ital Cardiol 1996; 26: 863–74
  • Van der Ent M., van den Heuvel A. F., Remme W. J. Neurohumoral response to carmoxirole, a selective dopamine (D2) receptor agonist, in patients with chronic moderate heart failure. Cardiovasc Drugs Ther 1998; 12: 387–94
  • Hayabuchi Y., Matsuoka S., Kuroda Y. Plasma concentrations of atrial and brain natriuretic peptides and cyclic guanosine monophosphate in response to dobutamine infusion in patients with surgically repaired tetralogy of fallot. Pediatr Cardiol 1999; 20: 343–50
  • Avgeropoulou C., Andreadou I., Markantonis‐Kyroudis S., Demopoulou M., Missovoulos P., Androulakis A., et al. The Ca2+‐sensitizer levosimendan improves oxidative damage, BNP and pro‐inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine. Eur J Heart Fail 2005; 7: 882–7
  • Cherng W. J., Wang C. H., Hung M. J. Changes of endothelin‐1 and atrial natriuretic peptide during dobutamine stress echocardiography. J Formos Med Assoc 1998; 97: 812–8
  • Asada J., Tsuji H., Iwasaka T., Thomas J. D., Lauer M. S. Usefulness of plasma brain natriuretic peptide levels in predicting dobutamine‐induced myocardial ischemia. Am J Cardiol 2004; 93: 702–4
  • Karabinos I., Karvouni E., Chiotinis N., Papadopoulos A., Simeonidis P., Tsolas O., et al. Acute changes in N‐terminal pro‐brain natriuretic peptide induced by dobutamine stress echocardiography. Eur J Echocardiogr 2006 Jul 15, [Epub ahead of print]
  • Tulassay T., Rascher W., Hajdu J., Lang R. E., Toth M., Seri I. Influence of dopamine on atrial natriuretic peptide level in premature infants. Acta Paediatr Scand 1987; 76: 42–6
  • Berglund H., Bevegard S., Carlens P., Hedner J., Hedner T. Atrial natriuretic peptide during acute treatment of congestive heart failure. Clin Physiol 1988; 8: 155–62
  • Sonoda K., Ikeda S., Miyahara Y., Kohno S. Successful treatment of chronic pulmonary thromboembolism by long‐term intermittent administration of milrinone, a phosphodiesterase‐III inhibitor. Int Med 2002; 41: 961–6
  • Moertl D., Berger R., Huelsmann M., Bojic A., Pacher R. Short‐term effects of levosimendan and prostaglandin E1 on hemodynamic parameters and B‐type natriuretic peptide levels in patients with decompensated chronic heart failure. Eur J Heart Fail 2005; 7: 1156–63
  • Parissis J. T., Adamopoulos S., Farmakis D., Filippatos G., Paraskevaidis I., Panou F., et al. Effects of serial levosimendan infusions on left ventricular performance and plasma biomarkers of myocardial injury and neurohormonal and immune activation in patients with advanced heart failure. Heart 2006; 92: 1768–72
  • McMurray J. J., Lang C. C., MacLean D., McDevitt D. G., Struthers A. D. Neuroendocrine changes post myocardial infarction: effects of xamoterol. Am Heart J 1990; 120: 56–62
  • Takemura K., Yasumura Y., Hirooka K., Hanatani A., Nakatani S., Komamura K., et al. Low‐dose amiodarone for patients with advanced heart failure who are intolerant of beta‐blockers. Circ J 2002; 66: 441–4
  • Shiga T., Hosaka F., Wakaumi M., Matsuda N., Tanizaki K., Kajimoto K., et al. Amiodarone decreases plasma brain natriuretic peptide level in patients with heart failure and ventricular tachyarrhythmia. Cardiovasc Drugs Ther 2003; 17: 325–33
  • Baranowska B., Wasilewska‐Dziubinska E., Radzikowska M., Plonowski A., Roguski K. Impaired response of atrial natriuretic peptide to acute water load in obesity and in anorexia nervosa. Eur J Endocrinol 1995; 132: 147–51
  • Spinetti A., Margutti A., Bertolini S., Bernardi F., BiFulco G., Degli Uberti E. C., et al. Hormonal replacement therapy affects calcitonin gene‐related peptide and atrial natriuretic peptide secretion in postmenopausal women. Eur J Endocrinol 1997; 137: 664–9
  • Hurlen M., Hole T., Seljeflot I., Arnesen H. Aspirin does not influence the effect of angiotensin‐converting enzyme inhibition on left ventricular ejection fraction 3 months after acute myocardial infarction. Eur J Heart Fail 2001; 3: 203–7
  • Jug B., Šebeštjen M., Šabovič M., Keber I. Clopidogrel is associated with a lesser increase in NT‐proBNP when compared to aspirin in patients with ischemic heart failure. J Card Fail 2006; 12: 446–51
  • Meune C., Wahbi K., Fulla Y., Cohen‐Solal A., Duboc D., Mahé I., et al. Effects of aspirin and clopidogrel on plasma brain natriuretic peptide in patients with heart failure receiving ACE inhibitors. Eur J Heart Fail 2006 Aug 14, [Epub ahead of print]
  • Wojnicz R., Nowak J., Szygula‐Jurkiewicz B., Wilczek K., Lekston A., Trzeciak P., et al. Adjunctive therapy with low‐molecular‐weight heparin in patients with chronic heart failure secondary to dilated cardiomyopathy: one year follow‐up results of the randomized trial. Am Heart J 2006; 152: 713e1–e7
  • Kim J., Ogai A., Nakatani S., Hashimura K., Kanzaki H., Komamura K., et al. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol 2006; 48: 1378–84
  • Li D., Wen J. F., Jin J. Y., Jin H., Ann H. S., Kim S. Z., et al. Histamine inhibits atrial myocytic ANP release via H2 receptor‐cAMP‐protein kinase signaling. Am J Physiol Regul Integr Comp Physiol 2003; 285: R380–93
  • Manner T., Kanto J., Ruskoaho H., Karhuvaara S., Viinamaki O., Valimaki M., et al. Hormonal, haemodynamic, and subjective effects of intravenously infused indomethacin: no change in the physiological response to hypertonic saline challenge. Pharmacol Toxicol 1989; 65: 231–5
  • Nielsen C. B., Sørensen S. S., Pedersen E. B. Effects of indomethacin on renal function in normotensive patients with chronic glomerulonephritis with preserved renal function. Scand J Clin Lab Invest 1994; 54: 523–9
  • Pedersen E. B., Bacevicius E., Bech J. N., Solling K., Pedersen H. B. Abnormal rhythmic oscillations of atrial natriuretic peptide and brain natriuretic peptide in chronic renal failure. Clin Sci 2006; 110: 491–501
  • Olsen M. E., Thomsen T., Hassager C., Ibsen H., Dige‐Petersen H. Hemodynamic and renal effects of indomethacin in losartan‐treated hypertensive individuals. Am J Hypertens 1999; 12: 209–16
  • Gavin A. D., Struthers A. D. Allopurinol reduces B‐type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart 2005; 91: 749–53
  • Strey C. H., Young J. M., Lainchbury J. H., Frampton C. M., Nicholls M. G., Richards A. M., et al. Short‐term statin therapy improves endothelial function and neurohormonal imbalance in normocholesterolaemic patients with non‐ischaemic heart failure. Heart 2006; 92: 1603–9
  • Davidson B. J., Rea C. D., Valenzuela G. J. Atrial natriuretic peptide, plasma renin activity, and aldosterone in women on estrogen therapy and with premenstrual syndrome. Fertil Steril 1988; 50: 743–6
  • Maffei S., Del Ry S., Prontera C., Clerico A. Increase in circulating levels of cardiac natriuretic peptides after hormone replacement therapy in postmenopausal women. Clin Sci (Lond) 2001; 101: 447–53
  • Karjalainen A. H., Ruskoaho H., Vuolteenaho O., Heikkinen J. E., Bäckström A‐C., Savolainen M. J., et al. Effects of estrogen replacement therapy on natriuretic peptides and blood pressure. Maturitas 2004; 47: 201–8
  • Kuroski de Bold M. L. Estrogen, natriuretic peptides and the renin‐angiotensin system. Cardiovasc Res 1999; 41: 524–31
  • Chen S., Garami M., Gardner D. G. Doxorubicin selectively inhibits brain versus atrial natriuretic peptide gene expression in cultured neonatal rat myocytes. Hypertension 1999; 34: 1223–31
  • Meinardi M. T., van Veldhuisen D. J., Gietema J. A., Dolsma W. V., Boomsma F., van den Berg M. P., et al. Prospective evaluation of early cardiac damage induced by epirubicin‐containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 2001; 19: 2746–53
  • Hayakawa H., Komada Y., Hirayama M., Hori H., Ito M., Sakurai M. Plasma levels of natriuretic peptides in relation to doxorubicin‐induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol 2001; 37: 4–9
  • Nousiainen T., Vanninen E., Jantunen E., Puustinen J., Remes J., Rantala A., et al. Natriuretic peptides during the development of doxorubicin‐induced left ventricular diastolic dysfunction. J Intern Med 2002; 251: 228–34
  • Perik P. J., De Vries E. G., Boomsma F., van der Graaf W. T., Sleijfer D. T., van Veldhuisen D. J., et al. Use of natriuretic peptides for detecting cardiac dysfunction in long‐term disease‐free breast cancer survivors. Anticancer Res 2005; 25: 3651–7
  • Pichon M. F., Cvitkovic F., Hacene K., Delaunay J., Lokiec F., Collignon M. A., et al. Drug‐induced cardiotoxicity studied by longitudinal B‐type natriuretic peptide assays and radionuclide ventriculography. In Vivo 2005; 19: 567–76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.