5,440
Views
321
CrossRef citations to date
0
Altmetric
Review Article

Sirtuins: The ‘magnificent seven’, function, metabolism and longevity

, , , , &
Pages 335-345 | Published online: 08 Jul 2009

References

  • Chen H., Lin R. J., Xie W., Wilpitz D., Evans R. M. Regulation of hormone‐induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999; 98: 675–86
  • Courey A. J., Jia S. Transcriptional repression: the long and the short of it. Genes Dev 2001; 15: 2786–96
  • Imai S., Johnson F. B., Marciniak R. A., McVey M., Park P. U., Guarente L. Sir2: an NAD‐dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 2000; 65: 297–302
  • Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase. Nature 2000; 403: 795–800
  • Lin S. J., Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 2003; 15: 241–6
  • Hoppe G. J., Tanny J. C., Rudner A. D., Gerber S. A., Danaie S., Gygi S. P., et al. Steps in assembly of silent chromatin in yeast: Sir3‐independent binding of a Sir2/Sir4 complex to silencers and role for Sir2‐dependent deacetylation. Mol Cell Biol 2002; 22: 4167–80
  • Ivy J. M., Klar A. J., Hicks J. B. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 1986; 6: 688–702
  • Rine J., Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987; 116: 9–22
  • Chen L., Widom J. Mechanism of transcriptional silencing in yeast. Cell 2005; 120: 37–48
  • Braunstein M., Rose A. B., Holmes S. G., Allis C. D., Broach J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 1993; 7: 592–604
  • Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570–80
  • Tissenbaum H. A., Guarente L. Increased dosage of a sir‐2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410: 227–30
  • Rogina B., Helfand S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004; 101: 15998–6003
  • Howitz K. T., Bitterman K. J., Cohen H. Y., Lamming D. W., Lavu S., Wood J. G., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191–6
  • Wood J. G., Rogina B., Lavu S., Howitz K., Helfand S. L., Tatar M., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430: 686–9
  • Baur J. A., Pearson K. J., Price N. L., Jamieson H. A., Lerin C., Kalra A., et al. Resveratrol improves health and survival of mice on a high‐calorie diet. Nature 2006; 444: 337–42
  • Bitterman K. J., Anderson R. M., Cohen H. Y., Latorre‐Esteves M., Sinclair D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002; 277: 45099–107
  • Bordone L., Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005; 6: 298–305
  • Lin S. J., Defossez P. A., Guarente L. Requirement of NAD and SIR2 for life‐span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289: 2126–8
  • Lin S. J., Kaeberlein M., Andalis A. A., Sturtz L. A., Defossez P. A., Culotta V. C., et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418: 344–8
  • Bakker B. M., Overkamp K. M., van Maris A. J., Kotter P., Luttik M. A., van Dijken J. P., et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 2001; 25: 15–37
  • Tanner K. G., Landry J., Sternglanz R., Denu J. M. Silent information regulator 2 family of NAD‐dependent histone/protein deacetylases generates a unique product, 1‐O‐acetyl‐ADP‐ribose. Proc Natl Acad Sci U S A 2000; 97: 14178–82
  • Liou G. G., Tanny J. C., Kruger R. G., Walz T., Moazed D. Assembly of the SIR complex and its regulation by O‐acetyl‐ADP‐ribose, a product of NAD‐dependent histone deacetylation. Cell 2005; 121: 515–27
  • Anderson R. M., Bitterman K. J., Wood J. G., Medvedik O., Cohen H., Lin S. S., et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady‐state NAD+ levels. J Biol Chem 2002; 277: 18881–90
  • Anderson R. M., Bitterman K. J., Wood J. G., Medvedik O., Sinclair D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003; 423: 181–5
  • Lin S. J., Ford E., Haigis M., Liszt G., Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004; 18: 12–6
  • Revollo J. R., Grimm A. A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 2004; 279: 50754–63
  • Sandmeier J. J., Celic I., Boeke J. D., Smith J. S. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathway. Genetics 2002; 160: 877–89
  • Lamming D. W., Latorre‐Esteves M., Medvedik O., Wong S. N., Tsang F. A., Wang C., et al. HST2 mediates SIR2‐independent life‐span extension by calorie restriction. Science 2005; 309: 1861–4
  • Sinclair D. A., Guarente L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 1997; 91: 1033–42
  • Longo V. D. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 2003; 38: 807–11
  • Fabrizio P., Pozza F., Pletcher S. D., Gendron C. M., Longo V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 2001; 292: 288–90
  • Fabrizio P., Liou L. L., Moy V. N., Diaspro A., SelverstoneValentine J., Gralla E. B., et al. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 2003; 163: 35–46
  • Kaeberlein M., Andalis A. A., Fink G. R., Guarente L. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 2002; 22: 8056–66
  • Kimura K. D., Tissenbaum H. A., Liu Y., Ruvkun G. daf‐2, an insulin receptor‐like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277: 942–6
  • Morris J. Z., Tissenbaum H. A., Ruvkun G. A phosphatidylinositol‐3‐OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996; 382: 536–9
  • Burnell A. M., Houthoofd K., O'Hanlon K., Vanfleteren J. R. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Exp Gerontol 2005; 40: 850–6
  • Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., et al. The Fork head transcription factor DAF‐16 transduces insulin‐like metabolic and longevity signals in C. elegans. Nature 1997; 389: 994–9
  • Lin K., Dorman J. B., Rodan A., Kenyon C. daf‐16: An HNF‐3/forkhead family member that can function to double the life‐span of Caenorhabditis elegans. Science 1997; 278: 1319–22
  • Berdichevsky A., Viswanathan M., Horvitz H. R., Guarente L. C. elegans SIR‐2.1 interacts with 14‐3‐3 proteins to activate DAF‐16 and extend life span. Cell 2006; 125: 1165–77
  • Wang Y., Oh S. W., Deplancke B., Luo J., Walhout A. J., Tissenbaum H. A. C. elegans 14‐3‐3 proteins regulate life span and interact with SIR‐2.1 and DAF‐16/FOXO. Mech Ageing Dev 2006; 127: 741–7
  • Rogina B., Helfand S. L., Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 2002; 298: 1745
  • Clancy D. J., Gems D., Harshman L. G., Oldham S., Stocker H., Hafen E., et al. Extension of life‐span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001; 292: 104–6
  • Hwangbo D. S., Gershman B., Tu M. P., Palmer M., Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004; 429: 562–6
  • Giannakou M. E., Goss M., Junger M. A., Hafen E., Leevers S. J., Partridge L. Long‐lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004; 305: 361
  • Rongvaux A., Shea R. J., Mulks M. H., Gigot D., Urbain J., Leo O., et al. Pre‐B‐cell colony‐enhancing factor, whose expression is up‐regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol 2002; 32: 3225–34
  • Samal B., Sun Y., Stearns G., Xie C., Suggs S., McNiece I. Cloning and characterization of the cDNA encoding a novel human pre‐B‐cell colony‐enhancing factor. Mol Cell Biol 1994; 14: 1431–7
  • Fukuhara A., Matsuda M., Nishizawa M., Segawa K., Tanaka M., Kishimoto K., et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307: 426–30
  • Holzenberger M., Dupont J., Ducos B., Leneuve P., Geloen A., Even P. C., et al. IGF‐1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003; 421: 182–7
  • Bluher M., Kahn B. B., Kahn C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003; 299: 572–4
  • Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC‐1alpha and SIRT1. Nature 2005; 434: 113–8
  • Lagouge M., Argmann C., Gerhart‐Hines Z., Meziane H., Lerin C., Daussin F., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC‐1alpha. Cell 2006; 127: 1109–22
  • Picard F., Auwerx J. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr 2002; 22: 167–97
  • Picard F., Kurtev M., Chung N., Topark‐Ngarm A., Senawong T., Machado De Oliveira R., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR‐gamma. Nature 2004; 429: 771–6
  • Nisoli E., Tonello C., Cardile A., Cozzi V., Bracale R., Tedesco L., et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310: 314–7
  • Moynihan K. A., Grimm A. A., Plueger M. M., Bernal‐Mizrachi E., Ford E., Cras‐Meneur C., et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose‐stimulated insulin secretion in mice. Cell Metab 2005; 2: 105–17
  • Zhang C. Y., Baffy G., Perret P., Krauss S., Peroni O., Grujic D., et al. Uncoupling protein‐2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 2001; 105: 745–55
  • Bordone L., Motta M. C., Picard F., Robinson A., Jhala U. S., Apfeld J., et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4: e31
  • Kitamura Y. I., Kitamura T., Kruse J. P., Raum J. C., Stein R., Gu W., et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2005; 2: 153–63
  • Hallows W. C., Lee S., Denu J. M. Sirtuins deacetylate and activate mammalian acetyl‐CoA synthetases. Proc Natl Acad Sci U S A 2006; 103: 10230–5
  • Araki T., Sasaki Y., Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305: 1010–3
  • Parker J. A., Arango M., Abderrahmane S., Lambert E., Tourette C., Catoire H., et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37: 349–50
  • Chen J., Zhou Y., Mueller‐Steiner S., Chen L. F., Kwon H., Yi S., et al. SIRT1 protects against microglia‐dependent amyloid‐beta toxicity through inhibiting NF‐kappaB signaling. J Biol Chem 2005; 280: 40364–74
  • Qin W., Yang T., Ho L., Zhao Z., Wang J., Chen L., et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006; 281: 21745–54
  • Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al. Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J Alzheimers Dis 2006; 10: 417–22
  • North B. J., Marshall B. L., Borra M. T., Denu J. M., Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+‐dependent tubulin deacetylase. Mol Cell 2003; 11: 437–44
  • Hiratsuka M., Inoue T., Toda T., Kimura N., Shirayoshi Y., Kamitani H., et al. Proteomics‐based identification of differentially expressed genes in human gliomas: down‐regulation of SIRT2 gene. Biochem Biophys Res Commun 2003; 309: 558–66
  • Dryden S. C., Nahhas F. A., Nowak J. E., Goustin A. S., Tainsky M. A. Role for human SIRT2 NAD‐dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003; 23: 3173–85
  • Inoue T., Hiratsuka M., Osaki M., Yamada H., Kishimoto I., Yamaguchi S., et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 2007; 26: 945–57
  • Li W., Zhang B., Tang J., Cao Q., Wu Y., Wu C., et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator‐2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha‐tubulin. J Neurosci 2007; 27: 2606–16
  • Onyango P., Celic I., McCaffery J. M., Boeke J. D., Feinberg A. P. SIRT3, a human SIR2 homologue, is an NAD‐dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 2002; 99: 13653–8
  • Schwer B., North B. J., Frye R. A., Ott M., Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide‐dependent deacetylase. J Cell Biol 2002; 158: 647–57
  • Shi T., Wang F., Stieren E., Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280: 13560–7
  • Rose G., Dato S., Altomare K., Bellizzi D., Garasto S., Greco V., et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003; 38: 1065–70
  • Bellizzi D., Dato S., Cavalcante P., Covello G., Di Cianni F., Passarino G., et al. Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 2007; 89: 143–50
  • Haigis M. C., Mostoslavsky R., Haigis K. M., Fahie K., Christodoulou D. C., Murphy A. J., et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941–54
  • Mostoslavsky R., Chua K. F., Lombard D. B., Pang W. W., Fischer M. R., Gellon L., et al. Genomic instability and aging‐like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315–29
  • Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP‐ribosyltransferase. J Biol Chem 2005; 280: 21313–20
  • Grummt I., Pikaard C. S. Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 2003; 4: 641–9
  • Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20: 1075–80
  • Muth V., Nadaud S., Grummt I., Voit R. Acetylation of TAF(I)68, a subunit of TIF‐IB/SL1, activates RNA polymerase I transcription. EMBO J 2001; 20: 1353–62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.