5,534
Views
129
CrossRef citations to date
0
Altmetric
Review Article

Rheumatoid arthritis and the complement system

, , &
Pages 517-530 | Published online: 08 Jul 2009

References

  • Walport M. J. Complement. Second of two parts. N Engl J Med 2001; 344: 1140–4
  • Seelen M. A., Roos A., Daha M. R. Role of complement in innate and autoimmunity. J Nephrol 2005; 18: 642–53
  • Kohl J. Drug evaluation: the C5a receptor antagonist PMX‐53. Curr Opin Mol Ther 2006; 8: 529–38
  • Riedemann N. C., Guo R. F., Ward P. A. A key role of C5a/C5aR activation for the development of sepsis. J Leukoc Biol 2003; 74: 966–70
  • Law S., Reid K. Complement. IRL Press, OxfordUK 1988
  • Kilgore K. S., Flory C. M., Miller B. F., Evans V. M., Warren J. S. The membrane attack complex of complement induces interleukin‐8 and monocyte chemoattractant protein‐1 secretion from human umbilical vein endothelial cells. Am J Pathol 1996; 149: 953–61
  • Reiter Y., Ciobotariu A., Fishelson Z. Sublytic complement attack protects tumor cells from lytic doses of antibody and complement. Eur J Immunol 1992; 22: 1207–13
  • Fosbrink M., Niculescu F., Rus H. The role of c5b‐9 terminal complement complex in activation of the cell cycle and transcription. Immunol Res 2005; 31: 37–46
  • S Reis E., Falcao D. A., Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol 2006; 63: 155–68
  • Richards A., Kathryn Liszewski M., Kavanagh D., Fang C. J., Moulton E., Fremeaux‐Bacchi V., et al. Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol 2007; 44: 111–22
  • Zipfel P. F., Misselwitz J., Licht C., Skerka C. The role of defective complement control in hemolytic uremic syndrome. Semin Thromb Hemost 2006; 32: 146–54
  • Zipfel P. F., Heinen S., Jozsi M., Skerka C. Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol Immunol 2006; 43: 97–106
  • Schaumberg D. A., Hankinson S. E., Guo Q., Rimm E., Hunter D. J. A prospective study of 2 major age‐related macular degeneration susceptibility alleles and interactions with modifiable risk factors. Arch Ophthalmol 2007; 125: 55–62
  • Seelen M. A., Daha M. R. The role of complement in autoimmune renal disease. Autoimmunity 2006; 39: 411–5
  • Chan R. K., Ibrahim S. I., Takahashi K., Kwon E., McCormack M., Ezekowitz A., et al. The differing roles of the classical and mannose‐binding lectin complement pathways in the events following skeletal muscle ischemia‐reperfusion. J Immunol 2006; 177: 8080–5
  • Biro E., Nieuwland R., Tak P. P., Pronk L. M., Schaap M. C., Sturk A., et al. Activated complement components and complement activator molecules on the surface of cell‐derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis 2007 Jan 29, (Epub ahead of print)
  • Allegretti M., Moriconi A., Beccari A. R., Di Bitondo R., Bizzarri C., Bertini R., et al. Targeting C5a: recent advances in drug discovery. Curr Med Chem 2005; 12: 217–36
  • Rus H., Cudrici C., Niculescu F. C5b‐9 complement complex in autoimmune demyelination and multiple sclerosis: dual role in neuroinflammation and neuroprotection. Ann Med 2005; 37: 97–104
  • Harpel P. C., Cooper N. R. Studies on human plasma C1 inactivator‐enzyme interactions. I. Mechanisms of interaction with C1s, plasmin, and trypsin. J Clin Invest 1975; 55: 593–604
  • Skidgel R. A., Kawahara M. S., Hugli T. E. Functional significance of the subunits of carboxypeptidase N (kininase I). Adv Exp Med Biol 1986; 198 Pt A: 375–80
  • Kim D. D., Song W. C. Membrane complement regulatory proteins. Clin Immunol 2006; 118: 127–36
  • Tsiftsoglou S. A., Willis A. C., Li P., Chen X., Mitchell D. A., Rao Z., et al. The catalytically active serine protease domain of human complement factor I. Biochemistry 2005; 44: 6239–49
  • Krushkal J., Bat O., Gigli I. Evolutionary relationships among proteins encoded by the regulator of complement activation gene cluster. Mol Biol Evol 2000; 17: 1718–30
  • Carroll M. C., Alicot E. M., Katzman P. J., Klickstein L. B., Smith J. A., Fearon D. T. Organization of the genes encoding complement receptors type 1 and 2, decay‐accelerating factor, and C4‐binding protein in the RCA locus on human chromosome 1. J Exp Med 1988; 167: 1271–80
  • Blom A. M., Kask L., Ramesh B., Hillarp A. Effects of zinc on factor I cofactor activity of C4b‐binding protein and factor H. Arch Biochem Biophys 2003; 418: 108–18
  • Schwaeble W., Zwirner J., Schulz T. F., Linke R. P., Dierich M. P., Weiss E. H. Human complement factor H: expression of an additional truncated gene product of 43 kDa in human liver. Eur J Immunol 1987; 17: 1485–9
  • McRae J. L., Murphy B. E., Eyre H. J., Sutherland G. R., Crawford J., Cowan P. J. Location and structure of the human FHR‐5 gene. Genetica 2002; 114: 157–61
  • Fu J., Lin G., Zeng B., Wu Z., Wu Y., Chu H., et al. Anti‐ischemia/reperfusion of C1 inhibitor in myocardial cell injury via regulation of local myocardial C3 activity. Biochem Biophys Res Commun 2006; 350: 162–8
  • Mulligan M. S., Warner R. L., Rittershaus C. W., Thomas L. J., Ryan U. S., Foreman K. E., et al. Endothelial targeting and enhanced antiinflammatory effects of complement inhibitors possessing sialyl Lewisx moieties. J Immunol 1999; 162: 4952–9
  • Hillmen P., Young N. S., Schubert J., Brodsky R. A., Socie G., Muus P., et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 2006; 355: 1233–43
  • Kirschfink M. C1‐inhibitor and transplantation. Immunobiology 2002; 205: 534–41
  • Smith C. A., Arnett F. C. Epidemiologic aspects of rheumatoid arthritis. Current immunogenetic approach. Clin Orthop Relat Res 1991; 1991: 23–35
  • Feldmann M., Brennan F. M., Maini R. N. Rheumatoid arthritis. Cell 1996; 85: 307–10
  • Lark M. W., Bayne E. K., Flanagan J., Harper C. F., Hoerrner L. A., Hutchinson N. I., et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 1997; 100: 93–106
  • Szekanecz Z., Gaspar L., Koch A. E. Angiogenesis in rheumatoid arthritis. Front Biosci 2005; 10: 1739–53
  • Schett G. Rheumatoid arthritis: inflammation and bone loss. Wien Med Wochenschr 2006; 156: 34–41
  • Gregersen P. K., Silver J., Winchester R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205–13
  • Plenge R. M., Padyukov L., Remmers E. F., Purcell S., Lee A. T., Karlson E. W., et al. Replication of putative candidate‐gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–60
  • Wandstrat A., Wakeland E. The genetics of complex autoimmune diseases: non‐MHC susceptibility genes. Nat Immunol 2001; 2: 802–9
  • Klareskog L., Padyukov L., Ronnelid J., Alfredsson L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 2006; 18: 650–5
  • Weissmann G. Pathogenesis of rheumatoid arthritis. J Clin Rheumatol 2004; 10: S26–31
  • Aho K., Palosuo T., Raunio V., Puska P., Aromaa A., Salonen J. T. When does rheumatoid disease start?. Arthritis Rheum 1985; 28: 485–9
  • Rantapaa‐Dahlqvist S., de Jong B. A., Berglin E., Hallmans G., Wadell G., Stenlund H., et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003; 48: 2741–9
  • Mewar D., Wilson A. G. Autoantibodies in rheumatoid arthritis: a review. Biomed Pharmacother 2006; 60: 648–55
  • Hepburn A. L., Mason J. C., Wang S., Shepherd C. J., Florey O., Haskard D. O., et al. Both Fcgamma and complement receptors mediate transfer of immune complexes from erythrocytes to human macrophages under physiological flow conditions in vitro. Clin Exp Immunol 2006; 146: 133–45
  • Morgan B. P., Daniels R. H., Williams B. D. Measurement of terminal complement complexes in rheumatoid arthritis. Clin Exp Immunol 1988; 73: 473–8
  • Swaak A. J., Van Rooyen A., Planten O., Han H., Hattink O., Hack E. An analysis of the levels of complement components in the synovial fluid in rheumatic diseases. Clin Rheumatol 1987; 6: 350–7
  • Brodeur J. P., Ruddy S., Schwartz L. B., Moxley G. Synovial fluid levels of complement SC5b‐9 and fragment Bb are elevated in patients with rheumatoid arthritis. Arthritis Rheum 1991; 34: 1531–7
  • Corvetta A., Pomponio G., Rinaldi N., Luchetti M. M., Di Loreto C., Stramazzotti D. Terminal complement complex in synovial tissue from patients affected by rheumatoid arthritis, osteoarthritis and acute joint trauma. Clin Exp Rheumatol 1992; 10: 433–8
  • Hogasen K., Mollnes T. E., Harboe M., Gotze O., Hammer H. B., Oppermann M. Terminal complement pathway activation and low lysis inhibitors in rheumatoid arthritis synovial fluid. J Rheumatol 1995; 22: 24–8
  • Moxley G., Ruddy S. Elevated C3 anaphylatoxin levels in synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum 1985; 28: 1089–95
  • Jose P. J., Moss I. K., Maini R. N., Williams T. J. Measurement of the chemotactic complement fragment C5a in rheumatoid synovial fluids by radioimmunoassay: role of C5a in the acute inflammatory phase. Ann Rheum Dis 1990; 49: 747–52
  • Woolley D. E., Tetlow L. C. Observations on the microenvironmental nature of cartilage degradation in rheumatoid arthritis. Ann Rheum Dis 1997; 56: 151–61
  • Tetlow L. C., Harper N., Dunningham T., Morris M. A., Bertfield H., Woolley D. E. Effects of induced mast cell activation on prostaglandin E and metalloproteinase production by rheumatoid synovial tissue in vitro. Ann Rheum Dis 1998; 57: 25–32
  • Jahn B., Von Kempis J., Kramer K. L., Filsinger S., Hansch G. M. Interaction of the terminal complement components C5b‐9 with synovial fibroblasts: binding to the membrane surface leads to increased levels in collagenase‐specific mRNA. Immunology 1993; 78: 329–34
  • Crockard A. D., Thompson J. M., McBride S. J., Edgar J. D., McNeill T. A., Bell A. L. Markers of inflammatory activation: upregulation of complement receptors CR1 and CR3 on synovial fluid neutrophils from patients with inflammatory joint disease. Clin Immunol Immunopathol 1992; 65: 135–42
  • Yuan G., Wei J., Zhou J., Hu H., Tang Z., Zhang G. Expression of C5aR (CD88) of synoviocytes isolated from patients with rheumatoid arthritis and osteoarthritis. Chin Med J (Engl) 2003; 116: 1408–12
  • Wouters D., Voskuyl A. E., Molenaar E. T., Dijkmans B. A., Hack C. E. Evaluation of classical complement pathway activation in rheumatoid arthritis: measurement of C1q‐C4 complexes as novel activation products. Arthritis Rheum 2006; 54: 1143–50
  • Berckmans R. J., Nieuwland R., Tak P. P., Boing A. N., Romijn F. P., Kraan M. C., et al. Cell‐derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII‐dependent mechanism. Arthritis Rheum 2002; 46: 2857–66
  • Makinde V. A., Senaldi G., Jawad A. S., Berry H., Vergani D. Reflection of disease activity in rheumatoid arthritis by indices of activation of the classical complement pathway. Ann Rheum Dis 1989; 48: 302–6
  • Aggarwal A., Bhardwaj A., Alam S., Misra R. Evidence for activation of the alternate complement pathway in patients with juvenile rheumatoid arthritis. Rheumatology (Oxford) 2000; 39: 189–92
  • Jarvis J. N., Taylor H., Iobidze M., Krenz M. Complement activation and immune complexes in children with polyarticular juvenile rheumatoid arthritis: a longitudinal study. J Rheumatol 1994; 21: 1124–7
  • Schaapherder A. F., Gooszen H. G., te Bulte M. T., Daha M. R. Human complement activation via the alternative pathway on porcine endothelium initiated by IgA antibodies. Transplantation 1995; 60: 287–91
  • Jarvis J. N., Iobidze M., Taylor H., DeJonge J., Chang S. A comparison of immunoglobulin G‐containing high‐molecular‐weight complexes isolated from children with juvenile rheumatoid arthritis and congenital human immunodeficiency virus infection. Pediatr Res 1993; 34: 781–4
  • van Zeben D., Hazes J. M., Zwinderman A. H., Cats A., van der Voort E. A., Breedveld F. C. Clinical significance of rheumatoid factors in early rheumatoid arthritis: results of a follow up study. Ann Rheum Dis 1992; 51: 1029–35
  • Hanauske‐Abel H. M., Pontz B. F., Schorlemmer H. U. Cartilage specific collagen activates macrophages and the alternative pathway of complement: evidence for an immunopathogenic concept of rheumatoid arthritis. Ann Rheum Dis 1982; 41: 168–76
  • Arnold J. N., Dwek R. A., Rudd P. M., Sim R. B. Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett 2006; 106: 103–10
  • Sato R., Matsushita M., Miyata M., Sato Y., Kasukawa R., Fujita T. Substances reactive with mannose‐binding protein (MBP) in sera of patients with rheumatoid arthritis. Fukushima J Med Sci 1997; 43: 99–111
  • Kilpatrick D. C. Mannan‐binding lectin and its role in innate immunity. Transfus Med 2002; 12: 335–52
  • Arend W. P. The innate immune system in rheumatoid arthritis. Arthritis Rheum 2001; 44: 2224–34
  • Nauta A. J., Raaschou‐Jensen N., Roos A., Daha M. R., Madsen H. O., Borrias‐Essers M. C., et al. Mannose‐binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 2003; 33: 2853–63
  • Kemp P. A., Spragg J. H., Brown J. C., Morgan B. P., Gunn C. A., Taylor P. W. Immunohistochemical determination of complement activation in joint tissues of patients with rheumatoid arthritis and osteoarthritis using neoantigen‐specific monoclonal antibodies. J Clin Lab Immunol 1992; 37: 147–62
  • Morgan K., Clague R. B., Shaw M. J., Firth S. A., Twose T. M., Holt P. J. Native type II collagen‐induced arthritis in the rat: the effect of complement depletion by cobra venom factor. Arthritis Rheum 1981; 24: 1356–62
  • Joe B., Wilder R. L. Animal models of rheumatoid arthritis. Mol Med Today 1999; 5: 367–9
  • Lindqvist A. K., Johannesson M., Johansson A. C., Nandakumar K. S., Blom A. M., Holmdahl R. Backcross and partial advanced intercross analysis of nonobese diabetic gene‐mediated effects on collagen‐induced arthritis reveals an interactive effect by two major loci. J Immunol 2006; 177: 3952–9
  • Spinella D. G., Jeffers J. R., Reife R. A., Stuart J. M. The role of C5 and T‐cell receptor Vb genes in susceptibility to collagen‐induced arthritis. Immunogenetics 1991; 34: 23–7
  • Ji H., Gauguier D., Ohmura K., Gonzalez A., Duchatelle V., Danoy P., et al. Genetic influences on the end‐stage effector phase of arthritis. J Exp Med 2001; 194: 321–30
  • McIndoe R. A., Bohlman B., Chi E., Schuster E., Lindhardt M., Hood L. Localization of non‐Mhc collagen‐induced arthritis susceptibility loci in DBA/1j mice. Proc Natl Acad Sci U S A 1999; 96: 2210–4
  • Baxter A. G., Cooke A. Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 1993; 42: 1574–8
  • Wetsel R. A., Fleischer D. T., Haviland D. L. Deficiency of the murine fifth complement component (C5). A 2‐base pair gene deletion in a 5'‐exon. J Biol Chem 1990; 265: 2435–40
  • Wang Y., Kristan J., Hao L., Lenkoski C. S., Shen Y., Matis L. A. A role for complement in antibody‐mediated inflammation: C5‐deficient DBA/1 mice are resistant to collagen‐induced arthritis. J Immunol 2000; 164: 4340–7
  • Hietala M. A., Jonsson I. M., Tarkowski A., Kleinau S., Pekna M. Complement deficiency ameliorates collagen‐induced arthritis in mice. J Immunol 2002; 169: 454–9
  • Banda N. K., Thurman J. M., Kraus D., Wood A., Carroll M. C., Arend W. P., et al. Alternative complement pathway activation is essential for inflammation and joint destruction in the passive transfer model of collagen‐induced arthritis. J Immunol 2006; 177: 1904–12
  • Hietala M. A., Nandakumar K. S., Persson L., Fahlen S., Holmdahl R., Pekna M. Complement activation by both classical and alternative pathways is critical for the effector phase of arthritis. Eur J Immunol 2004; 34: 1208–16
  • Nandakumar K. S., Holmdahl R. Antibody‐induced arthritis: disease mechanisms and genes involved at the effector phase of arthritis. Arthritis Res Ther 2007; 8: 223
  • Wang Y., Rollins S. A., Madri J. A., Matis L. A. Anti‐C5 monoclonal antibody therapy prevents collagen‐induced arthritis and ameliorates established disease. Proc Natl Acad Sci U S A 1995; 92: 8955–9
  • Ji H., Ohmura K., Mahmood U., Lee D. M., Hofhuis F. M., Boackle S. A., et al. Arthritis critically dependent on innate immune system players. Immunity 2002; 16: 157–68
  • Matsumoto I., Staub A., Benoist C., Mathis D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 1999; 286: 1732–5
  • Sjoberg A., Onnerfjord P., Morgelin M., Heinegard D., Blom A. M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem 2005; 280: 32301–8
  • Bengtsson E., Neame P. J., Heinegard D., Sommarin Y. The primary structure of a basic leucine‐rich repeat protein, PRELP, found in connective tissues. J Biol Chem 1995; 270: 25639–44
  • Groeneveld T. W., Oroszlan M., Owens R. T., Faber‐Krol M. C., Bakker A. C., Arlaud G. J., et al. Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J Immunol 2005; 175: 4715–23
  • Barilla M. L., Carsons S. E. Fibronectin fragments and their role in inflammatory arthritis. Semin Arthritis Rheum 2000; 29: 252–65
  • Bohnsack J. F., Tenner A. J., Laurie G. W., Kleinman H. K., Martin G. R., Brown E. J. The C1q subunit of the first component of complement binds to laminin: a mechanism for the deposition and retention of immune complexes in basement membrane. Proc Natl Acad Sci U S A 1985; 82: 3824–8
  • Oldberg A., Antonsson P., Lindblom K., Heinegard D. A collagen‐binding 59‐kd protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG‐S1 and PG‐S2 (decorin). EMBO J 1989; 8: 2601–4
  • Benjamin M., Ralphs J. R. Biology of fibrocartilage cells. Int Rev Cytol 2004; 233: 1–45
  • Svensson L., Aszodi A., Reinholt F. P., Fassler R., Heinegard D., Oldberg A. Fibromodulin‐null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem 1999; 274: 9636–47
  • Heathfield T. F., Onnerfjord P., Dahlberg L., Heinegard D. Cleavage of fibromodulin in cartilage explants involves removal of the N‐terminal tyrosine sulfate‐rich region by proteolysis at a site that is sensitive to matrix metalloproteinase‐13. J Biol Chem 2004; 279: 6286–95
  • Krumdieck R., Hook M., Rosenberg L. C., Volanakis J. E. The proteoglycan decorin binds C1q and inhibits the activity of the C1 complex. J Immunol 1992; 149: 3695–701
  • Poole A. R., Webber C., Pidoux I., Choi H., Rosenberg L. C. Localization of a dermatan sulfate proteoglycan (DS‐PGII) in cartilage and the presence of an immunologically related species in other tissues. J Histochem Cytochem 1986; 34: 619–25
  • Kim H. J., Berek C. B cells in rheumatoid arthritis. Arthritis Res 2000; 2: 126–31
  • Schroder A. E., Greiner A., Seyfert C., Berek C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci U S A 1996; 93: 221–5
  • Roosnek E., Lanzavecchia A. Efficient and selective presentation of antigen‐antibody complexes by rheumatoid factor B cells. J Exp Med 1991; 173: 487–9
  • Chan O. T., Hannum L. G., Haberman A. M., Madaio M. P., Shlomchik M. J. A novel mouse with B cells but lacking serum antibody reveals an antibody‐independent role for B cells in murine lupus. J Exp Med 1999; 189: 1639–48
  • Lindhout E., van Eijk M., van Pel M., Lindeman J., Dinant H. J., de Groot C. Fibroblast‐like synoviocytes from rheumatoid arthritis patients have intrinsic properties of follicular dendritic cells. J Immunol 1999; 162: 5949–56
  • Clark E. A., Ledbetter J. A. How does B cell depletion therapy work, and how can it be improved?. Ann Rheum Dis 2005; 64(Suppl 4)77–80
  • Shan D., Ledbetter J. A., Press O. W. Signaling events involved in anti‐CD20‐induced apoptosis of malignant human B cells. Cancer Immunol Immunother 2000; 48: 673–83
  • Edwards J. C., Szczepanski L., Szechinski J., Filipowicz‐Sosnowska A., Emery P., Close D. R., et al. Efficacy of B‐cell‐targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350: 2572–81
  • Chan H. T., Hughes D., French R. R., Tutt A. L., Walshe C. A., Teeling J. L., et al. CD20‐induced lymphoma cell death is independent of both caspases and its redistribution into triton X‐100 insoluble membrane rafts. Cancer Res 2003; 63: 5480–9
  • Di Gaetano N., Cittera E., Nota R., Vecchi A., Grieco V., Scanziani E., et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003; 171: 1581–7
  • Bannerji R., Kitada S., Flinn I. W., Pearson M., Young D., Reed J. C., et al. Apoptotic‐regulatory and complement‐protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–71
  • van der Kolk L. E., Grillo‐Lopez A. J., Baars J. W., Hack C. E., van Oers M. H. Complement activation plays a key role in the side‐effects of rituximab treatment. Br J Haematol 2001; 115: 807–11
  • Giles J. T., Bathon J. M. Serious infections associated with anticytokine therapies in the rheumatic diseases. J Intensive Care Med 2004; 19: 320–34
  • Breedveld F. New tumor necrosis factor‐alpha biologic therapies for rheumatoid arthritis. Eur Cytokine Netw 1998; 9: 233–8
  • Strangfeld A., Listing J. Infection and musculoskeletal conditions: Bacterial and opportunistic infections during anti‐TNF therapy. Best Pract Res Clin Rheumatol 2006; 20: 1181–95
  • Desai S. B., Furst D. E. Problems encountered during anti‐tumour necrosis factor therapy. Best Pract Res Clin Rheumatol 2006; 20: 757–90
  • Quigg R. J. Use of complement inhibitors in tissue injury. Trends Mol Med 2002; 8: 430–6
  • Krych‐Goldberg M., Atkinson J. P. Structure‐function relationships of complement receptor type 1. Immunol Rev 2001; 180: 112–22
  • Yoon S. H., Fearon D. T. Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma. J Immunol 1985; 134: 3332–8
  • Linton S. M., Williams A. S., Dodd I., Smith R., Williams B. D., Morgan B. P. Therapeutic efficacy of a novel membrane‐targeted complement regulator in antigen‐induced arthritis in the rat. Arthritis Rheum 2000; 43: 2590–7
  • Rioux P. TP‐10 (AVANT Immunotherapeutics). Curr Opin Investig Drugs 2001; 2: 364–71
  • Zimmerman J. L., Dellinger R. P., Straube R. C., Levin J. L. Phase I trial of the recombinant soluble complement receptor 1 in acute lung injury and acute respiratory distress syndrome. Crit Care Med 2000; 28: 3149–54
  • Schmid R. A., Hillinger S., Hamacher J., Stammberger U. TP20 is superior to TP10 in reducing ischemia/reperfusion injury in rat lung grafts. Transplant Proc 2001; 33: 948–9
  • Thomas T. C., Rollins S. A., Rother R. P., Giannoni M. A., Hartman S. L., Elliott E. A., et al. Inhibition of complement activity by humanized anti‐C5 antibody and single‐chain Fv. Mol Immunol 1996; 33: 1389–401
  • Tesser J., Kivitz A., Fleischmann R., Mojcik C. F., Bombara M., Phoneix F. B. Safety and efficacy of the humanized anti‐C5 antibody h5G1.1 in patients with rheumatoid arthritis. Arthritis Rheum 2001; S214
  • Burch F., Tesser J., Bell L., Kivitz A. Baseline C5b‐9 level correlates with CRP and ACR 20 response to the humanized anti‐C5 antibody hG51.1 in patients with rheumatoid arthritis. Arthritis Rheum 2001; S274
  • Mizuno M. A review of current knowledge of the complement system and the therapeutic opportunities in inflammatory arthritis. Curr Med Chem 2006; 13: 1707–17
  • Johansson A. C., Sundler M., Kjellen P., Johannesson M., Cook A., Lindqvist A. K., et al. Genetic control of collagen‐induced arthritis in a cross with NOD and C57BL/10 mice is dependent on gene regions encoding complement factor 5 and FcgammaRIIb and is not associated with loci controlling diabetes. Eur J Immunol 2001; 31: 1847–56
  • Solomon S., Kolb C., Mohanty S., Jeisy‐Walder E., Preyer R., Schollhorn V., et al. Transmission of antibody‐induced arthritis is independent of complement component 4 (C4) and the complement receptors 1 and 2 (CD21/35). Eur J Immunol 2002; 32: 644–51
  • Dreja H., Annenkov A., Chernajovsky Y. Soluble complement receptor 1 (CD35) delivered by retrovirally infected syngeneic cells or by naked DNA injection prevents the progression of collagen‐induced arthritis. Arthritis Rheum 2000; 43: 1698–709
  • Koga T., Kakimoto K., Hirofuji T., Kotani S., Ohkuni H., Watanabe K., et al. Acute joint inflammation in mice after systemic injection of the cell wall, its peptidoglycan, and chemically defined peptidoglycan subunits from various bacteria. Infect Immun 1985; 50: 27–34
  • van Lent P. L., van den Bersselaar L. A., van den Hoek A. E., van de Loo A. A., van den Berg W. B. Cationic immune complex arthritis in mice—a new model. Synergistic effect of complement and interleukin‐1. Am J Pathol 1992; 140: 1451–61
  • Mizuno M., Nishikawa K., Morgan B. P., Matsuo S. Comparison of the suppressive effects of soluble CR1 and C5a receptor antagonist in acute arthritis induced in rats by blocking of CD59. Clin Exp Immunol 2000; 119: 368–75
  • Goodfellow R. M., Williams A. S., Levin J. L., Williams B. D., Morgan B. P. Soluble complement receptor one (sCR1) inhibits the development and progression of rat collagen‐induced arthritis. Clin Exp Immunol 2000; 119: 210–6
  • Goodfellow R. M., Williams A. S., Levin J. L., Williams B. D., Morgan B. P. Local therapy with soluble complement receptor 1 (sCR1) suppresses inflammation in rat mono‐articular arthritis. Clin Exp Immunol 1997; 110: 45–52
  • Ino Y., Sato T., Koshiyama Y., Suzuki K., Oda M., Iwaki M. Effects of FUT‐175, a novel synthetic protease inhibitor, on the development of adjuvant arthritis in rats and some biological reactions dependent on complement activation. Gen Pharmacol 1987; 18: 513–6
  • Ames R. S., Lee D., Foley J. J., Jurewicz A. J., Tornetta M. A., Bautsch W., et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol 2001; 166: 6341–8
  • Woodruff T. M., Strachan A. J., Dryburgh N., Shiels I. A., Reid R. C., Fairlie D. P., et al. Antiarthritic activity of an orally active C5a receptor antagonist against antigen‐induced monarticular arthritis in the rat. Arthritis Rheum 2002; 46: 2476–85
  • Harris C. L., Williams A. S., Linton S. M., Morgan B. P. Coupling complement regulators to immunoglobulin domains generates effective anti‐complement reagents with extended half‐life in vivo. Clin Exp Immunol 2002; 129: 198–207
  • Fraser D. A., Harris C. L., Williams A. S., Mizuno M., Gallagher S., Smith R. A., et al. Generation of a recombinant, membrane‐targeted form of the complement regulator CD59: activity in vitro and in vivo. J Biol Chem 2003; 278: 48921–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.