1,104
Views
44
CrossRef citations to date
0
Altmetric
Review Article

Intracellular signaling pathways pave roads to recovery for mood disorders

&
Pages 531-544 | Published online: 08 Jul 2009

References

  • Kessler R. C., Berglund P., Demler O., Jin R., Koretz D., Merikangas K. R., et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS‐R). JAMA 2003; 289: 3095–105
  • Wittchen H. U., Knauper B., Kessler R. C. Lifetime risk of depression. Br J Psychiatry Suppl 1994; 16–22
  • Pincus H. A., Pettit A. R. The societal costs of chronic major depression. J Clin Psychiatry 2001; 62(Suppl 6)5–9
  • Stewart W. F., Ricci J. A., Chee E., Hahn S. R., Morganstein D. Cost of lost productive work time among US workers with depression. JAMA 2003; 289: 3135–44
  • Greenberg P. E., Kessler R. C., Birnbaum H. G., Leong S. A., Lowe S. W., Berglund P. A., et al. The economic burden of depression in the United States: how did it change between 1990 and 2000?. J Clin Psychiatry 2003; 64: 1465–75
  • Murray C. J., Lopez A. D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349: 1498–504
  • Goodwin F., Jamison K. R. Manic Depressive Illness. Oxford University Press, New York 1990
  • Nelson J. C. A review of the efficacy of serotonergic and noradrenergic reuptake inhibitors for treatment of major depression. Biol Psychiatry 1999; 46: 1301–8
  • Wong M. L., Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004; 3: 136–51
  • Montgomery S. A. Why do we need new and better antidepressants?. Int Clin Psychopharmacol 2006; 21(Suppl 1)S1–10
  • Geddes J. R., Burgess S., Hawton K., Jamison K., Goodwin G. M. Long‐term lithium therapy for bipolar disorder: systematic review and meta‐analysis of randomized controlled trials. Am J Psychiatry 2004; 161: 217–22
  • Zarate C. A., Jr., Quiroz J. A. Combination treatment in bipolar disorder: a review of controlled trials. Bipolar Disord 2003; 5: 217–25
  • Mukherjee S., Sackeim H. A., Schnur D. B. Electroconvulsive therapy of acute manic episodes: a review of 50 years' experience. Am J Psychiatry 1994; 151: 169–76
  • D'Sa C., Duman R. S. Antidepressants and neuroplasticity. Bipolar Disord 2002; 4: 183–94
  • Yamada M., Higuchi T. Antidepressant‐elicited changes in gene expression Remodeling of neuronal circuits as a new hypothesis for drug efficacy. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 999–1009
  • Duman R. S., Monteggia L. M. A neurotrophic model for stress‐related mood disorders. Biol Psychiatry 2006; 59: 1116–27
  • Manji H., Duman R. S. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49
  • Manji H. K., Drevets W. C., Charney D. S. The cellular neurobiology of depression. Nat Med 2001; 7: 541–7
  • Duman R. Depression: A case of neuronal life and death?. Biol Psychiatry 2004; 56: 140–45
  • Sheline Y., Gado M. H., Kraemer H. C. Untreated depression and hippocampal volume loss. Am J Psychiatry 2003; 160: 1516–8
  • Vermetten E., Vythilingam M., Southwick S. M., Charney D. S., Bremner J. D. Long‐term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 2003; 54: 693–702
  • Moore G., Bebchuk J. M., Wilds I. B., Chen G., Manji H. K., Menji H. K. Lithium‐induced increase in human brain grey matter. Lancet 2000; 356: 1241–2
  • Drevets W. Neuroimaging studies of mood disorders. Biol Psychiatry 2000; 48: 813–29
  • Malberg J., Eisch A. J., Nestler E. J., Duman R. S. Chronic antidepressant treatment increases neurogenesis in adult hippocampus. J Neurosci 2000; 20: 9104–10
  • Czeh B., Michaelis T., Watanabe T., Frahm J., de Biurrun G., van Kampen M., et al. Stress‐induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001; 98: 12796–801
  • Madsen T., Treschow A., Bengzon J., Bolwig T. G., Lindvall O., Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47: 1043–49
  • Manev H., Uz T., Smalheiser N. R., Manev R. Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 2001; 411: 67–70
  • Santarelli L., Saxe M., Gross C., Surget A., Battaglia F., Dulawa S., et al. Requirement of hippocampal neurogenisis for the behavioral effects of antidepressants. Science 2003; 301: 805–09
  • Chen G., Rajkowska G., Du F., Seraji‐Bozorgzad N., Manji H. K. Enhancement of hippocampal neurogenesis by lithium. J Neurochem 2000; 75: 1729–34
  • Perez J., Tardito D., Mori S., Racagni G., Smeraldi E., Zanardi R. Abnormalities of cAMP signaling in affective disorders: implication for pathophysiology and treatment. Bipolar Disord 2000; 2: 27–36
  • Duman R. Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry 1998; 44: 324–35
  • Adayev T., Ranasinghe B., Banerjee P. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci Rep 2005; 25: 363–85
  • Zheng M., Zhu W., Han Q., Xiao R. P. Emerging concepts and therapeutic implications of beta‐adrenergic receptor subtype signaling. Pharmacol Ther 2005; 1083): 257–68
  • Aantaa R., Marjamaki A., Scheinin M. Molecular pharmacology of alpha 2‐adrenoceptor subtypes. Ann Med 1995; 27((4))439–49
  • Kamenetsky M., Middelhaufe S., Bank E. M., Levin L. R., Buck J., Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006; 362: 623–39
  • Brandon E. P., Idzerda R. L., McKnight G. S. PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol 1997; 7: 397–403
  • Nguyen P. V., Woo N. H. Regulation of hippocampal synaptic plasticity by cyclic AMP‐dependent protein kinases. Prog Neurobiol 2003; 71: 401–37
  • Lonze B. E., Ginty D. D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35: 605–23
  • Dyke H. J., Montana J. G. Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 2002; 11: 1–13
  • Houslay M. D., Schafer P., Zhang K. Y. Keynote review: phosphodiesterase‐4 as a therapeutic target. Drug Discov Today 2005; 10: 1503–19
  • Dowlatshahi D., MacQueen G. M., Wang J. F., Young L. T. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 1998; 352: 1754–5
  • Dowlatshahi D., MacQueen G. M., Wang J. F., Reiach J. S., Young L. T. G protein‐coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem 1999; 73: 1121–6
  • Cowburn R. F., Marcusson J. O., Eriksson A., Wiehager B., O'Neill C. Adenylyl cyclase activity and G‐protein subunit levels in postmortem frontal cortex of suicide victims. Brain Res 1994; 633: 297–304
  • Manier D., Eiring A., Shelton R. C., Sulser F. β‐Adrenoceptor‐linked protein Kinase A (PKA) activity in human fibroblasts from normal subjects and from patients with major depression. Neuropsychopharm 1996; 15: 556–61
  • Manier D. H., Shelton R. C., Ellis T. C., Peterson C. S., Eiring A., Sulser F. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000; 61: 51–8
  • Menkes D. B., Rasenick M. M., Wheeler M. A., Bitensky M. W. Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long‐term antidepressant treatment. Science 1983; 129: 65–7
  • Ozawa H., Rasenick M. M. Chronic electroconvulsive treatment augments coupling of the GTP‐binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem 1991; 56: 330–8
  • Perez J., Tinelli D., Brunello N., Racagni G. cAMP‐dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol 1989; 172: 305–16
  • Nestler E., Terwilliger R. Z., Duman R. S. Chronic antidepressant administration alters the subcellular distribution of cAMP‐dependent protein kinase in rat frontal cortex. J Neurochem 1989; 53: 1644–7
  • Ye Y., Conti M., Houslay M. D., Faroqui S. M., Chen M., O'Donnell J. M. Noradrenergic activity differentially regulates the expression of rolipram‐sensitive, high‐affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem 1997; 69: 2397–404
  • Takahashi M., Terwilliger R., Lane S., Mezes P. S., Conti M., Duman R. S. Chronic antidepressant administration increases the expression of cAMP phosphodiesterase 4A and 4B isoforms. J Neurosci 1999; 19: 610–18
  • Nibuya M., Nestler E. J., Duman R. S. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365–72
  • Fujimaki K., Morinobu S., Duman R. S. Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant‐induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 2000; 22: 42–51
  • Gould T. D., Quiroz J. A., Singh J., Zarate C. A., Manji H. K. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 2004; 9: 734–55
  • Chen G., Manji H. K., Wright C. B., Hawver D. B., Potter W. Z. Effects of valproic acid on beta‐adrenergic receptors, G‐proteins, and adenylyl cyclase in rat C6 glioma cells. Neuropsychopharmacology 1996; 15: 271–80
  • Chen G., Pan B., Hawver D. B., Wright C. B., Potter W. Z., Manji H. K. Attenuation of cyclic AMP production by carbamazepine. J Neurochem 1996; 67: 2079–86
  • Deogracias R., Espliguero G., Iglesias T., Rodriguez‐Pena A. Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 2004; 26: 470–80
  • Fukuchi M., Tabuchi A., Tsuda M. Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J Pharmacol Sci 2005; 98: 212–18
  • McCauslin C. S., Heath V., Colangelo A. M., Malik R., Lee S., Mallei A., et al. CAAT/Enhancer‐binding Protein {delta} and cAMP‐response Element‐binding Protein Mediate Inducible Expression of the Nerve Growth Factor Gene in the Central Nervous System. J Biol Chem 2006; 281: 17681–8
  • Thomas M. J., Umayahara Y., Shu H., Centrella M., Rotwein P., McCarthy T. L. Identification of the cAMP response element that controls transcriptional activation of the insulin‐like growth factor‐I gene by prostaglandin E2 in osteoblasts. J Biol Chem 1996; 271: 21835–41
  • Tanimoto K., Yoshida E., Mita S., Nibu Y., Murakami K., Fukamizu A. Human activin betaA gene. Identification of novel 5' exon, functional promoter, and enhancers. J Biol Chem 1996; 271: 32760–9
  • Pugazhenthi S., Miller E., Sable C., Young P., Heidenreich K. A., Boxer L. M., et al. Insulin‐like growth factor‐I induces bcl‐2 promoter through the transcription factor cAMP‐response element‐binding protein. J Biol Chem 1999; 274: 27529–35
  • Jeon S. H., Seong Y. S., Juhnn Y. S., Kang U. G., Ha K. S., Kim Y. S., et al. Electroconvulsive shock increases the phosphorylation of cyclic AMP response element binding protein at Ser‐133 in rat hippocampus but not in cerebellum. Neuropharmacology 1997; 36: 411–4
  • Thome J., Sakai N., Shin K. H., Steffen C., Zhang Y‐J., Impey S., et al. cAMP response element‐mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030–6
  • Chen A‐H., Shirayama Y., Shin K‐H., Neve R. L., Duman R. S. Expression of the cAMP response element binding protein (CREB) in hippocampus produces antidepressant effect. Biol Psychiatry 2001; 49: 753–62
  • Tiraboschi E., Tardito D., Kasahara J., Moraschi S., Pruneri P., Gennarelli M., et al. Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades. Neuropsychopharmacology 2004; 29: 1831–40
  • Alt A., Nisenbaum E. S., Bleakman D., Witkin J. M. A role for AMPA receptors in mood disorders. Biochem Pharmacol 2006; 71: 1273–88
  • Svenningsson P., Tzavara E. T., Liu F., Fienberg A. A., Nomikos G. G., Greengard P. DARPP‐32 mediates serotonergic neurotransmission in the forebrain. Proc Natl Acad Sci U S A 2002; 99: 3188–93
  • Svenningsson P., Tzavara E. T., Witkin J. M., Fienberg A. A., Nomikos G. G., Greengard P. Involvement of striatal and extrastriatal DARPP‐32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci U S A 2002; 99: 3182–7
  • Newton S. S., Thome J., Wallace T. L., Shirayama Y., Schlesinger L., Sakai N., et al. Inhibition of cAMP response element‐binding protein or dynorphin in the nucleus accumbens produces an antidepressant‐like effect. J Neurosci 2002; 22: 10883–90
  • Pliakas A., Carlson R. R., Neve R. L., Konradi C., Nestler E. J., Carlezon W. A. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated CREB expression in the nucleus accumbens. J Neurosci 2001; 21: 7397–403
  • Duman R. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004; 5: 11–25
  • Dwivedi Y., Rizavi H. S., Conley R. R., Pandey G. N. ERK MAP kinase signaling in post‐mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf‐1 and B‐Raf. Mol Psychiatry 2006; 11: 86–98
  • Dwivedi Y., Rizavi H. S., Roberts R. C., Conley R. C., Tamminga C. A., Pandey G. N. Reduced activation and expression of ERK1/2 MAP kinase in the post‐mortem brain of depressed suicide subjects. J Neurochem 2001; 77: 916–28
  • Karege F., Vaudan G., Schwald M., Perroud N., La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 2005; 136: 29–37
  • Mercier G., Lennon A. M., Renouf B., Dessouroux A., Ramauge M., Courtin F., et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004; 24: 207–16
  • Kodama M., Russell D. S., Duman R. S. Electroconvulsive seizures increase the expression of MAP kinase phosphatases in limbic regions of rat brain. Neuropsychopharm 2005; 30: 360–71
  • Bhat R. V., Engber T. M., Finn J. P., Koury E. J., Contreras P. C., Miller M. S., et al. Region‐specific targets of p42/p44MAPK signaling in rat brain. J Neurochem 1998; 70: 558–71
  • Einat H., Yuan P., Gould T. D., Li j., Du J., Zhang L., et al. The role of the extracellular signal‐regulated kinase signaling pathway in mood modulation. J Neurosci 2003; 23: 7311–16
  • Hao Y., Creson T., Zhang L., Li P., Yuan P., Gould T. D., et al. Mood stabilizer valproate promotes ERK pathway‐dependent cortical neuronal growth and neurogenesis. J Neurosci 2004; 24: 6590–9
  • Yuan P., Juong L. D., Jiang Y. M., Gutkind J. S., Manji H. K., Chen G. The mood‐stabilizer valproic acid activates mitogen‐activated protein kinases and promotes neurite growth. J Biol Chem 2001; 19: 19
  • Duman C. H., Schlesinger L., Kodama M., Russell D. S., Duman R. S. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007; 61: 661–70
  • Dwivedi Y., Rizavi H. S., Conley R. R., Roberts R. C., Tamminga C. A., Pandey G. N. Altered gene expression of brain‐derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60: 804–15
  • Karege F., Perret G., Bondolfi G., Schwald M., Bertschy G., Aubry J. M. Decreased serum brain‐derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143–8
  • Shimizu E., Hashimoto K., Okamura N., Koike K., Komatsu N., Kumakiri C., et al. Alterations of serum levels of brain‐derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003; 54: 70–5
  • Evans S., Choudary P. V., Neal C. R., Li J. Z., Vawter M. P., Tomita H., et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A 2004; 101: 15506–11
  • Ueyama T., Kawai Y., Nemoto K., Sekimoto M., Tone S., Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Research 1997; 28: 103–10
  • Heine V., Zareno J., Maslam S., Joels M., Lucassen P. J. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk‐1 protein expression. Eur J Neurosci 2005; 21: 1304–14
  • Newton S., Collier E., Hunsberger J., Adams D., Salvanayagam E., Duman R. S. Gene profile of electroconvulsive seizures: induction of neurogenic and angiogenic factors. J Neurosci 2003; 23: 10841–51
  • Altar C. A., Laeng P., Jurata L. W., Brockman J. A., Lemire A., Bullard J., et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004; 24: 2667–77
  • Warner‐Schmidt J. L., Duman R. S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci U S A 2007; 104: 4647–52
  • Dow A. L., Russell D. S., Duman R. S. Regulation of activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. J Neurosci 2005; 25: 4908–16
  • Khawaja X., Xu J., Liang J. J., Barrett J. E. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res 2004; 75: 451–60
  • Mallei A., Shi B., Mocchetti I. Antidepressant treatments induce the expression of basic fibroblast growth factor in cortical and hippocampal neurons. Mol Pharmacol 2002; 61: 1017–24
  • Gonul A. S., Akdeniz F., Taneli F., Donat O., Eker C., Vahip S. Effect of treatment on serum brain‐derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005; 255: 381–6
  • Chen B., Dowlatshahi D., MacQueen G. M., Wang J‐F., Young L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–5
  • Aydemir O., Deveci A., Taneli F. The effect of chronic antidepressant treatment on serum brain‐derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psych 2004; 29: 261–5
  • Gervasoni N., Aubrey J. M., Bondolfi G., Osiek G., Schwald M., Bertschv G., et al. Partial normalization of serum brain‐derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology 2005; 51: 234–8
  • Fukumoto T., Morinobu S., Okamoto Y., Kagaya A., Yamawaki S. Chronic lithium treatment increases the expression of brain‐derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 2001; 158: 100–6
  • Duman R., Monteggia L. M. A neurotrophic model for stress‐related mood disorders. Biol Psychiatry 2006; 59: 1116–27
  • Berton O., McClung C. A., Dileone R. J., Krishnan V., Renthal W., Russo S. J., et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–8
  • Eisch A. J., Bolanos C. A., de Wit J., Simonak R. D., Pudiak C. M., Barrot M., et al. Brain‐derived neurotrophic factor in the ventral midbrain‐nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54: 994–1005
  • Shirayama Y., Chen A. C., Nakagawa S., Russell D. S., Duman R. S. Brain‐derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–61
  • Warner J., Duman R. S. Vascular endothelial growth factor mediates antidepressant‐induced neurogenesis. Soc Neurosci Abstract 2005
  • Hoshaw B. A., Malberg J. E., Lucki I. Central administration of IGF‐I and BDNF leads to long‐lasting antidepressant‐like effects. Brain Res 2005; 1037: 204–8
  • Conti A. C., Cryan J. F., Dalvi A., Lucki I., Blendy J. A. cAMP response element‐binding protein is essential for the upregulation of brain‐derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 2002; 22: 3262–8
  • Farooq A., Zhou M. M. Structure and regulation of MAPK phosphatases. Cell Signal 2004; 16: 769–79
  • Theodosiou A., Ashworth A. MAP kinase phosphatases. Genome Biol 2002; 3: REVIEWS3009
  • Keyse S. M. Protein phosphatases and the regulation of mitogen‐activated protein kinase signalling. Curr Opin Cell Biol 2000; 12: 186–92
  • Canettieri G., Morantte I., Guzman E., Asahara H., Herzig S., Anderson S. D., et al. Attenuation of a phosphorylation‐dependent activator by an HDAC‐PP1 complex. Nat Struct Biol 2003; 10: 175–81
  • Huang E., Reichardt L. F. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003; 72: 609–42
  • Rhee S. G. Regulation of phosphoinositide‐specific phospholipase C. Annu Rev Biochem 2001; 70: 281–312
  • Battaini F. Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol Res 2001; 44: 353–61
  • Keenan C., Kelleher D. Protein kinase C and the cytoskeleton. Cell Signal 1998; 10: 225–32
  • Allison J. H., Stewart M. A. Reduced brain inositol in lithium‐treated rats. Nat New Biol 1971; 233: 267–8
  • Allison J. H., Blisner M. E., Holland W. H., Hipps P. P., Sherman W. R. Increased brain myo‐inositol 1‐phosphate in lithium‐treated rats. Biochem Biophys Res Commun 1976; 71: 664–70
  • Moore G. J., Bebchuk J. M., Parrish J. K., Faulk M. W., Arfken C. L., Strahl‐Bevacqua J., et al. Temporal dissociation between lithium‐induced changes in frontal lobe myo‐inositol and clinical response in manic‐depressive illness. Am J Psychiatry 1999; 156: 1902–8
  • O'Donnell T., Rotzinger S., Nakashima T. T., Hanstock C. C., Ulrich M., Silverstone P. H. Chronic lithium and sodium valproate both decrease the concentration of myo‐inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 2000; 880: 84–91
  • Wolfson M., Hertz E., Belmaker R. H., Hertz L. Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms. Brain Res 1998; 787: 34–40
  • Williams R., Cheng L., Mudge A. W., Harwood A. J. A common mechanism of action for three mood‐stabilizing drugs. Nature 2002; 417: 292–5
  • Shamir A., Shaltiel G., Greenberg M. L., Belmaker R. H., Agam G. The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Brain Res Mol Brain Res 2003; 115: 104–10
  • Harwood A. J. Lithium and bipolar mood disorder: the inositol‐depletion hypothesis revisited. Mol Psychiatry 2005; 10: 117–26
  • Wang H. Y., Johnson G. P., Friedman E. Lithium treatment inhibits protein kinase C translocation in rat brain cortex. Psychopharmacology (Berl) 2001; 158: 80–6
  • Wang H., Friedman E. Increased association of brain protein kinase C with the receptor for activated C kinase‐1 (RACK1) in bipolar affective disorder. Biol Psychiatry 2001; 50: 364–70
  • Lenox R. H., Watson D. G., Patel J., Ellis J. Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992; 570: 333–40
  • Manji H. K., Etcheberrigaray R., Chen G., Olds J. L. Lithium decreases membrane‐associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993; 61: 2303–10
  • Manji H. K., Bersudsky Y., Chen G., Belmaker R. H., Potter W. Z. Modulation of protein kinase C isozymes and substrates by lithium: the role of myo‐inositol. Neuropsychopharmacology 1996; 15: 370–81
  • Manji H. K., Lenox R. H. Ziskind‐Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic‐depressive illness. Biol Psychiatry 1999; 46: 1328–51
  • Gould T., Manji H. K. Glycogen synthase kinase‐3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 2005; 30: 1223–37
  • Watcharasit P., Bijur G. N., Zmijewski J. W., Song L., Zmijewska A., Chen X., et al. Direct, activating interaction between glycogen synthase kinase‐3beta and p53 after DNA damage. Proc Natl Acad Sci U S A 2002; 99: 7951–5
  • Linseman D. A., Butts B. D., Precht T. A., Phelps R. A., Le S. S., Laessig T. A., et al. Glycogen synthase kinase‐3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 2004; 24: 9993–10002
  • Grimes C. A., Jope R. S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65: 391–426
  • Grimes C. A., Jope R. S. CREB DNA binding activity is inhibited by glycogen synthase kinase‐3 beta and facilitated by lithium. J Neurochem 2001; 78: 1219–32
  • Katso R., Okkenhaug K., Ahmadi K., White S., Timms J., Waterfield M. D. Cellular function of phosphoinositide 3‐kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–75
  • Raymond J. R., Mukhin Y. V., Gelasco A., Turner J., Collinsworth G., Gettys T. W., et al. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001; 92: 179–212
  • Bennecib M., Gong C. X., Grundke‐Iqbal I., Iqbal K. Role of protein phosphatase‐2A and ‐1 in the regulation of GSK‐3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett 2000; 485: 87–93
  • Klein P., Melton D. A. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996; 93: 8455–9
  • Stambolic V., Ruel L., Woodgett J. R. Lithium inhibits glycogen synthase kinase‐3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–8
  • De Sarno P., Li X., Jope R. S. Regulation of Akt and glycogen synthase kinase‐3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43: 1158–64
  • Kirshenboim N., Plotkin B., Shlomo S. B., Kaidanovich‐Beilin O., Eldar‐Finkelman H. Lithium‐mediated phosphorylation of glycogen synthase kinase‐3beta involves PI3 kinase‐dependent activation of protein kinase C‐alpha. J Mol Neurosci 2004; 24: 237–45
  • Chalecka‐Franaszek E., Chuang D. M. Lithium activates the serine/threonine kinase Akt‐1 and suppresses glutamate‐induced inhibition of Akt‐1 activity in neurons. Proc Natl Acad Sci U S A 1999; 96: 8745–50
  • Gould T. D., Chen G., Manji H. K. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase‐3. Neuropsychopharmacology 2004; 29: 32–8
  • Chen G., Huang L. D., Jiang Y. M., Manji H. K. The mood‐stabilizing agent valproate inhibits the activity of glycogen synthase kinase‐3. J Neurochem 1999; 72: 1327–30
  • Hall A. C., Brennan A., Goold R. G., Cleverley K., Lucas F. R., Gordon‐Weeks P. R., et al. Valproate regulates GSK‐3‐mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 2002; 20: 257–70
  • Roh M. S., Eom T. Y., Zmijewska A. A., De Sarno P., Roth K. A., Jope R. S. Hypoxia activates glycogen synthase kinase‐3 in mouse brain in vivo: protection by mood stabilizers and imipramine. Biol Psychiatry 2005; 57: 278–86
  • Li X., Zhu W., Roh M. S., Friedman A. B., Rosborough K., Jope R. S. In vivo regulation of glycogen synthase kinase‐3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 2004; 29: 1426–31
  • Madsen T. M., Newton S. S., Eaton M. E., Russell D. S., Duman R. S. Chronic electroconvulsive seizure up‐regulates beta‐catenin expression in rat hippocampus: role in adult neurogenesis. Biol Psychiatry 2003; 54: 1006–14
  • Kang U. G., Roh M. S., Jung J. R., Shin S. Y., Lee Y. H., Park J. B., et al. Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 41–4
  • Roh M. S., Kang U. G., Shin S. Y., Lee Y. H., Jung H. Y., Juhnn Y. S., et al. Biphasic changes in the Ser‐9 phosphorylation of glycogen synthase kinase‐3beta after electroconvulsive shock in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1–5
  • Alimohamad H., Rajakumar N., Seah Y. H., Rushlow W. Antipsychotics alter the protein expression levels of beta‐catenin and GSK‐3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry 2005; 57: 533–42
  • Emamian E. S., Hall D., Birnbaum M. J., Karayiorgou M., Gogos J. A. Convergent evidence for impaired AKT1‐GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–7
  • Kaidanovich‐Beilin O., Milman A., Weizman A., Pick C. G., Eldar‐Finkelman H. Rapid antidepressive‐like activity of specific glycogen synthase kinase‐3 inhibitor and its effect on beta‐catenin in mouse hippocampus. Biol Psychiatry 2004; 55: 781–4
  • Gould T. D., Einat H., Bhat R., Manji H. K. AR‐A014418, a selective GSK‐3 inhibitor, produces antidepressant‐like effects in the forced swim test. Int J Neuropsychopharmacol 2004; 7: 387–90
  • O'Brien W. T., Harper A. D., Jove F., Woodgett J. R., Maretto S., Piccolo S., et al. Glycogen synthase kinase‐3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 2004; 24: 6791–8
  • Beaulieu J. M., Sotnikova T. D., Yao W. D., Kockeritz L., Woodgett J. R., Gainetdinov R. R., et al. Lithium antagonizes dopamine‐dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 2004; 101: 5099–104
  • Jeon Y. H., Heo Y. S., Kim C. M., Hyun Y. L., Lee T. G., Ro S., et al. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci 2005; 62: 1198–220
  • Tsankova N. M., Berton O., Renthal W., Kumar A., Neve R. L., Nestler E. J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9: 519–25
  • Phiel C. J., Zhang F., Huang E. Y., Guenther M. G., Lazar M. A., Klein P. S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–41
  • Bebchuk J. M., Arfken C. L., Dolan‐Manji S., Murphy J., Hasanat K., Manji H. K. A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry 2000; 57: 95–7
  • Bhat R. V., Budd Haeberlein S. L., Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 2004; 89: 1313–7
  • Gould T. D., Zarate C. A., Manji H. K. Glycogen synthase kinase‐3: a target for novel bipolar disorder treatments. J Clin Psychiatry 2004; 65: 10–21
  • Tanis K. Q., Newton S. S., Duman R. S. Targeting neurotrophic/growth factor expression and signaling for antidepressant drug development. CNS Neurol Disord Drug Targets 2007; 6: 151–60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.