993
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Genetics of type 2 diabetes mellitus and obesity—a review

&
Pages 2-10 | Published online: 08 Jul 2009

References

  • Zimmet P., Alberti K. G., Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–7
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2007; 30(Suppl 1)S42–7
  • Velho G., Froguel P., Clement K., Pueyo M. E., Rakotoambinina B., Zouali H., et al. Primary pancreatic beta‐cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet 1992; 340: 444–8
  • Hattersley A. T., Saker P. J., Cook J. T., Stratton I. M., Patel P., Permutt M. A., et al. Microsatellite polymorphisms at the glucokinase locus: a population association study in Caucasian type 2 diabetic subjects. Diabet Med 1993; 10: 694–8
  • Owen K., Hattersley A. T. Maturity‐onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract Res Clin Endocrinol Metab 2001; 15: 309–23
  • Yamagata K., Oda N., Kaisaki P. J., Menzel S., Furuta H., Vaxillaire M., et al. Mutations in the hepatocyte nuclear factor‐1alpha gene in maturity‐onset diabetes of the young (MODY3). Nature 1996; 384: 455–8
  • Pearson E. R., Starkey B. J., Powell R. J., Gribble F. M., Clark P. M., Hattersley A. T. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003; 362: 1275–81
  • Yamagata K., Furuta H., Oda N., Kaisaki P. J., Menzel S., Cox N. J., et al. Mutations in the hepatocyte nuclear factor‐4alpha gene in maturity‐onset diabetes of the young (MODY1). Nature 1996; 384: 458–60
  • Pearson E. R., Boj S. F., Steele A. M., Barrett T., Stals K., Shield J. P., et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 2007; 4: e118
  • Bellanne‐Chantelot C., Chauveau D., Gautier J. F., Dubois‐Laforgue D., Clauin S., Beaufils S., et al. Clinical spectrum associated with hepatocyte nuclear factor‐1beta mutations. Ann Intern Med 2004; 140: 510–7
  • Pearson E. R., Badman M. K., Lockwood C. R., Clark P. M., Ellard S., Bingham C., et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor‐1alpha and ‐1beta mutations. Diabetes Care 2004; 27: 1102–7
  • Stoffers D. A., Ferrer J., Clarke W. L., Habener J. F. Early‐onset type‐II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 1997; 17: 138–9
  • Malecki M. T., Jhala U. S., Antonellis A., Fields L., Doria A., Orban T., et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 1999; 23: 323–8
  • Raeder H., Johansson S., Holm P. I., Haldorsen I. S., Mas E., Sbarra V., et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 2006; 38: 54–62
  • Frayling T. M., Evans J. C., Bulman M. P., Pearson E., Allen L., Owen K., et al. beta‐cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001; 50(Suppl 1)S94–100
  • Temple I. K., Gardner R. J., Mackay D. J., Barber J. C., Robinson D. O., Shield J. P. Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 2000; 49: 1359–66
  • Gardner R. J., Mackay D. J., Mungall A. J., Polychronakos C., Siebert R., Shield J. P., et al. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet 2000; 9: 589–96
  • Sagen J. V., Raeder H., Hathout E., Shehadeh N., Gudmundsson K., Baevre H., et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 2004; 53: 2713–8
  • Gloyn A. L., Pearson E. R., Antcliff J. F., Proks P., Bruining G. J., Slingerland A. S., et al. Activating mutations in the gene encoding the ATP‐sensitive potassium‐channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004; 350: 1838–49
  • Proks P., Arnold A. L., Bruining J., Girard C., Flanagan S. E., Larkin B., et al. A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 2006; 15: 1793–800
  • Babenko A. P., Polak M., Cave H., Busiah K., Czernichow P., Scharfmann R., et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006; 355: 456–66
  • Koster J. C., Marshall B. A., Ensor N., Corbett J. A., Nichols C. G. Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell 2000; 100: 645–54
  • Proks P., Girard C., Baevre H., Njolstad P. R., Ashcroft F. M. Functional Effects of Mutations at F35 in the NH2‐terminus of Kir6.2 (KCNJ11), Causing Neonatal Diabetes, and Response to Sulfonylurea Therapy. Diabetes 2006; 55: 1731–7
  • Codner E., Flanagan S. E., Ugarte F., Garcia H., Vidal T., Ellard S., et al. Sulfonylurea treatment in young children with neonatal diabetes: dealing with hyperglycemia, hypoglycemia, and sick days. Diabetes Care 2007; 30: e28–9
  • Stanik J., Gasperikova D., Paskova M., Barak L., Javorkova J., Jancova E., et al. Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers. J Clin Endocrinol Metab 2007; 92: 1276–82
  • McCarthy M. I. Progress in defining the molecular basis of type 2 diabetes mellitus through susceptibility‐gene identification. Hum Mol Genet 2004; 13(Spec No 1)R33–41
  • Kadowaki T., Kadowaki H., Mori Y., Tobe K., Sakuta R., Suzuki Y., et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med 1994; 330: 962–8
  • Farooqi I. S. Genetic aspects of severe childhood obesity. Pediatr Endocrinol Rev 2006; 3(Suppl 4)528–36
  • Frayling T. M., Timpson N. J., Weedon M. N., Zeggini E., Freathy R. M., Lindgren C. M., et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007; 316: 889–94
  • Farooqi I. S., Keogh J. M., Yeo G. S., Lank E. J., Cheetham T., O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348: 1085–95
  • Farooqi I. S., Yeo G. S., Keogh J. M., Aminian S., Jebb S. A., Butler G., et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106: 271–9
  • Lubrano‐Berthelier C., Cavazos M., Dubern B., Shapiro A., Stunff C. L., Zhang S., et al. Molecular genetics of human obesity‐associated MC4R mutations. Ann N Y Acad Sci 2003; 994: 49–57
  • Lubrano‐Berthelier C., Durand E., Dubern B., Shapiro A., Dazin P., Weill J., et al. Intracellular retention is a common characteristic of childhood obesity‐associated MC4R mutations. Hum Mol Genet 2003; 12: 145–53
  • Krude H., Biebermann H., Luck W., Horn R., Brabant G., Gruters A. Severe early‐onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–7
  • Jackson R. S., Creemers J. W., Ohagi S., Raffin‐Sanson M. L., Sanders L., Montague C. T., et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 1997; 16: 303–6
  • Clement K., Vaisse C., Lahlou N., Cabrol S., Pelloux V., Cassuto D., et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401
  • Montague C. T., Farooqi I. S., Whitehead J. P., Soos M. A., Rau H., Wareham N. J., et al. Congenital leptin deficiency is associated with severe early‐onset obesity in humans. Nature 1997; 387: 903–8
  • Hattersley A. T., McCarthy M. I. What makes a good genetic association study?. Lancet 2005; 366: 1315–23
  • Wacholder S., Chanock S., Garcia‐Closas M., El Ghormli L., Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004; 96: 434–42
  • Rankinen T., Zuberi A., Chagnon Y. C., Weisnagel S. J., Argyropoulos G., Walts B., et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529–644
  • Merikangas K. R., Risch N. Genomic priorities and public health. Science 2003; 302: 599–601
  • McCarthy M. I., Smedley D., Hide W. New methods for finding disease‐susceptibility genes: impact and potential. Genome Biol 2003; 4: 119
  • Grant S. F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., et al. Variant of transcription factor 7‐like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38: 320–3
  • Horikawa Y., Oda N., Cox N. J., Li X., Orho‐Melander M., Hara M., et al. Genetic variation in the gene encoding calpain‐10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26: 163–75
  • Weedon M. N., Schwarz P. E., Horikawa Y., Iwasaki N., Illig T., Holle R., et al. Meta‐analysis and a large association study confirm a role for calpain‐10 variation in type 2 diabetes susceptibility. Am J Hum Genet 2003; 73: 1208–12
  • Bell C. G., Walley A. J., Froguel P. The genetics of human obesity. Nat Rev Genet 2005; 6: 221–34
  • Loos R. J., Bouchard C. Obesity—is it a genetic disorder?. J Intern Med 2003; 254: 401–25
  • Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–7
  • Altshuler D., Hirschhorn J. N., Klannemark M., Lindgren C. M., Vohl M‐C., Nemesh J., et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 76–80
  • Gloyn A. L., Weedon M. N., Owen K. R., Turner M. J., Knight B. A., Hitman G., et al. Large‐scale association studies of variants in genes encoding the pancreatic beta‐cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52: 568–72
  • Barroso I., Gurnell M., Crowley V. E., Agostini M., Schwabe J. W., Soos M. A., et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402: 880–3
  • Soyal S., Krempler F., Oberkofler H., Patsch W. PGC‐1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 2006; 49: 1477–88
  • ‘t Hart L. M., Hansen T., Rietveld I., Dekker J. M., Nijpels G., Janssen G. M., et al. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes 2005; 54: 1892–5
  • Weedon M. N., Owen K. R., Shields B., Hitman G., Walker M., McCarthy M. I., et al. Common variants of the hepatocyte nuclear factor‐4alpha P2 promoter are associated with type 2 diabetes in the U.K. population. Diabetes 2004; 53: 3002–6
  • Huxtable S. J., Saker P. J., Haddad L., Walker M., Frayling T. M., Levy J. C., et al. Analysis of parent‐offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes 2000; 49: 126–30
  • Owen K. R., Groves C. J., Hanson R. L., Knowler W. C., Shuldiner A. R., Elbein S. C., et al. Common variation in the LMNA gene (encoding lamin A/C) and type 2 diabetes: association analyses in 9,518 subjects. Diabetes 2007; 56: 879–83
  • Larsen L. H., Echwald S. M., Sorensen T. I., Andersen T., Wulff B. S., Pedersen O. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile‐onset obesity. J Clin Endocrinol Metab 2005; 90: 219–24
  • Boutin P., Dina C., Vasseur F., Dubois S., Corset L., Seron K., et al. GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol 2003; 1: E68
  • Meyre D., Boutin P., Tounian A., Deweirder M., Aout M., Jouret B., et al. Is glutamate decarboxylase 2 (GAD2) a genetic link between low birth weight and subsequent development of obesity in children?. J Clin Endocrinol Metab 2005; 90: 2384–90
  • Meyre D., Bouatia‐Naji N., Tounian A., Samson C., Lecoeur C., Vatin V., et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005; 37: 863–7
  • Swarbrick M. M., Waldenmaier B., Pennacchio L. A., Lind D. L., Cavazos M. M., Geller F., et al. Lack of support for the association between GAD2 polymorphisms and severe human obesity. PLoS Biol 2005; 3: e315
  • Groves C. J., Zeggini E., Walker M., Hitman G. A., Levy J. C., O'Rahilly S., et al. Significant Linkage of BMI to Chromosome 10p in the U.K. Population and Evaluation of GAD2 as a Positional Candidate. Diabetes 2006; 55: 1884–9
  • The International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–96
  • Barrett J. C., Cardon L. R. Evaluating coverage of genome‐wide association studies. Nat Genet 2006; 38: 659–62
  • Fan J. B., Chee M. S., Gunderson K. L. Highly parallel genomic assays. Nat Rev Genet 2006; 7: 632–44
  • Zeggini E., McCarthy M. I. TCF7L2: the biggest story in diabetes genetics since HLA?. Diabetologia 2007; 50: 1–4
  • Helgason A., Palsson S., Thorleifsson G., Grant S. F., Emilsson V., Gunnarsdottir S., et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 2007; 39: 218–225
  • Smith U. TCF7L2 and type 2 diabetes—we WNT to know. Diabetologia 2007; 50: 5–7
  • Zeggini E., Weedon M. N., Lindgren C. M., Frayling T. M., Elliott K. S., Lango H., et al. Replication of Genome‐Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes. Science 2007; 316: 1336–41
  • Scott L. J., Mohlke K. L., Bonnycastle L. L., Willer C. J., Li Y., Duren W. L., et al. A Genome‐Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science 2007; 316: 1341–5
  • Saxena R., Voight B. F., Lyssenko V., Burtt N. P., de Bakker P. I., Chen H., et al. Genome‐Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 2007; 316: 1331–6
  • Steinthorsdottir V., Thorleifsson G., Reynisdottir I., Benediktsson R., Jonsdottir T., Walters G. B., et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007; 39: 770–5
  • Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., et al. A genome‐wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881–5
  • Ubeda M., Rukstalis J. M., Habener J. F. Inhibition of cyclin‐dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem 2006; 281: 28858–64
  • Krishnamurthy J., Ramsey M. R., Ligon K. L., Torrice C., Koh A., Bonner‐Weir S., et al. p16INK4a induces an age‐dependent decline in islet regenerative potential. Nature 2006; 443: 453–7
  • Herbert A., Gerry N. P., McQueen M. B., Heid I. M., Pfeufer A., Illig T., et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312: 279–83
  • Lyon H. N., Emilsson V., Hinney A., Heid I. M., Lasky‐Su J., Zhu X., et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet 2007; 3: e61
  • Dina C., Meyre D., Gallina S., Durand E., Korner A., Jacobson P., et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39: 724–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.