899
Views
162
CrossRef citations to date
0
Altmetric
Trends in Molecular Medicine

MicroRNAs: A new class of gene regulators

&
Pages 197-208 | Published online: 08 Jul 2009

References

  • Ptashne M. Regulation of transcription: from lambda to eukaryotes. Trends Biochem Sci 2005; 30: 275–9
  • True J. R., Carroll S. B. Gene co‐option in physiological and morphological evolution. Annu Rev Cell Dev Biol 2002; 18: 53–80
  • Tian Q., Stepaniants S. B., Mao M., Weng L., Feetham M. C., Doyle M. J., et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 2004; 3: 960–9
  • Chen K., Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93–103
  • Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell 1993; 75: 843–54
  • Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin‐14 by lin‐4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–62
  • Reinhart B. J., Slack F. J., Basson M., Pasquinelli A. E., Bettinger J. C., Rougvie A. E., et al. The 21‐nucleotide let‐7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–6
  • Pasquinelli A. E., Reinhart B. J., Slack F., Martindale M. Q., Kuroda M. I., Maller B., et al. Conservation of the sequence and temporal expression of let‐7 heterochronic regulatory RNA. Nature 2000; 408: 86–9
  • Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–11
  • Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co‐Suppression of Homologous Genes in trans. Plant Cell 1990; 2: 279–89
  • van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990; 2: 291–9
  • Jorgensen R. A., Doetsch N., Muller A., Que Q., Gendler K., Napoli C. A. A paragenetic perspective on integration of RNA silencing into the epigenome and its role in the biology of higher plants. Cold Spring Harb Symp Quant Biol 2006; 71: 481–5
  • Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–8
  • Lee Y., Jeon K., Lee J. T., Kim S., Kim V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663–70
  • Lee Y., Kim M., Han J., Yeom K. H., Lee S., Baek S. H., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–60
  • Cai X., Hagedorn C. H., Cullen B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10: 1957–66
  • Lagos‐Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–8
  • Lau N. C., Lim L. P., Weinstein E. G., Bartel D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–62
  • Rodriguez A., Griffiths‐Jones S., Ashurst J. L., Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–10
  • Borchert G. M., Lanier W., Davidson B. L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13: 1097–101
  • Okamura K., Hagen J. W., Duan H., Tyler D. M., Lai E. C. The mirtron pathway generates microRNA‐class regulatory RNAs in Drosophila. Cell 2007; 130: 89–100
  • Ruby J. G., Jan C. H., Bartel D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 2007; 448: 83–6
  • Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–9
  • Denli A. M., Tops B. B., Plasterk R. H., Ketting R. F., Hannon G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432: 231–5
  • Gregory R. I., Yan K. P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–40
  • Han J., Lee Y., Yeom K. H., Kim Y. K., Jin H., Kim V. N. The Drosha‐DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016–27
  • Landthaler M., Yalcin A., Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004; 14: 2162–7
  • Bohnsack M. T., Czaplinski K., Gorlich D. Exportin 5 is a RanGTP‐dependent dsRNA‐binding protein that mediates nuclear export of pre‐miRNAs. RNA 2004; 10: 185–91
  • Yi R., Qin Y., Macara I. G., Cullen B. R. Exportin‐5 mediates the nuclear export of pre‐microRNAs and short hairpin RNAs. Genes Dev 2003; 17: 3011–6
  • Lund E., Guttinger S., Calado A., Dahlberg J. E., Kutay U. Nuclear export of microRNA precursors. Science 2004; 303: 95–8
  • Hutvagner G., McLachlan J., Pasquinelli A. E., Balint E., Tuschl T., Zamore P. D. A cellular function for the RNA‐interference enzyme Dicer in the maturation of the let‐7 small temporal RNA. Science 2001; 293: 834–8
  • Grishok A., Pasquinelli A. E., Conte D., Li N., Parrish S., Ha I., et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106: 23–34
  • Bernstein E., Caudy A. A., Hammond S. M., Hannon G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–6
  • Ketting R. F., Fischer S. E., Bernstein E., Sijen T., Hannon G. J., Plasterk R. H. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15: 2654–9
  • Knight S. W., Bass B. L. A role for the RNase III enzyme DCR‐1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001; 293: 2269–71
  • Forstemann K., Tomari Y., Du T., Vagin V. V., Denli A. M., Bratu D. P., et al. Normal microRNA maturation and germ‐line stem cell maintenance requires Loquacious, a double‐stranded RNA‐binding domain protein. PLoS Biol 2005; 3: e236
  • Saito K., Ishizuka A., Siomi H., Siomi M. C. Processing of pre‐microRNAs by the Dicer‐1‐Loquacious complex in Drosophila cells. PLoS Biol 2005; 3: e235
  • Chendrimada T. P., Gregory R. I., Kumaraswamy E., Norman J., Cooch N., Nishikura K., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436: 740–4
  • Khvorova A., Reynolds A., Jayasena S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–16
  • Schwarz D. S., Hutvagner G., Du T., Xu Z., Aronin N., Zamore P. D. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208
  • Sasaki T., Shiohama A., Minoshima S., Shimizu N. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 2003; 82: 323–30
  • Peters L., Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell 2007; 26: 611–23
  • Liu J., Carmell M. A., Rivas F. V., Marsden C. G., Thomson J. M., Song J. J., et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437–41
  • Hutvagner G., Zamore P. D. A microRNA in a multiple‐turnover RNAi enzyme complex. Science 2002; 297: 2056–60
  • Lee Y. S., Nakahara K., Pham J. W., Kim K., He Z., Sontheimer E. J., et al. Distinct roles for Drosophila Dicer‐1 and Dicer‐2 in the siRNA/miRNA silencing pathways. Cell 2004; 117: 69–81
  • Okamura K., Ishizuka A., Siomi H., Siomi M. C. Distinct roles for Argonaute proteins in small RNA‐directed RNA cleavage pathways. Genes Dev 2004; 18: 1655–66
  • Pillai R. S., Bhattacharyya S. N., Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol 2007; 17: 118–26
  • Jackson R. J., Standart N. How do microRNAs regulate gene expression?. Sci STKE 2007; 2007: re1
  • Jin P., Alisch R. S., Warren S. T. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 2004; 6: 1048–53
  • Caudy A. A., Ketting R. F., Hammond S. M., Denli A. M., Bathoorn A. M., Tops B. B., et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003; 425: 411–4
  • Caudy A. A., Myers M., Hannon G. J., Hammond S. M. Fragile X‐related protein and VIG associate with the RNA interference machinery. Genes Dev 2002; 16: 2491–6
  • Mourelatos Z., Dostie J., Paushkin S., Sharma A., Charroux B., Abel L., et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002; 16: 720–8
  • Liu Q., Rand T. A., Kalidas S., Du F., Kim H. E., Smith D. P., et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 2003; 301: 1921–5
  • Tomari Y., Du T., Haley B., Schwarz D. S., Bennett R., Cook H. A., et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 2004; 116: 831–41
  • Chu C. Y., Rana T. M. Translation repression in human cells by microRNA‐induced gene silencing requires RCK/p54. PLoS Biol 2006; 4: e210
  • Naar A. M., Lemon B. D., Tjian R. Transcriptional coactivator complexes. Annu Rev Biochem 2001; 70: 475–501
  • Liu J., Rivas F. V., Wohlschlegel J., Yates J. R 3rd., Parker R., Hannon G. J. A role for the P‐body component GW182 in microRNA function. Nat Cell Biol 2005; 7: 1261–6
  • Sen G. L., Blau H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 2005; 7: 633–6
  • Brengues M., Teixeira D., Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005; 310: 486–9
  • Bhattacharyya S. N., Habermacher R., Martine U., Closs E. I., Filipowicz W. Relief of microRNA‐mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–24
  • Lee R. C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–4
  • Lagos‐Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T. Identification of tissue‐specific microRNAs from mouse. Curr Biol 2002; 12: 735–9
  • Berezikov E., Cuppen E., Plasterk R. H. Approaches to microRNA discovery. Nat Genet 2006; 38(Suppl)S2–7
  • Cummins J. M., He Y., Leary R. J., Pagliarini R., Diaz L. A Jr., Sjoblom T., et al. The colorectal microRNAome. Proc Natl Acad Sci U S A 2006; 103: 3687–92
  • Kim V. N., Nam J. W. Genomics of microRNA. Trends Genet 2006; 22: 165–73
  • Landgraf P., Rusu M., Sheridan R., Sewer A., Iovino N., Aravin A., et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–14
  • Ambros V., Bartel B., Bartel D. P., Burge C. B., Carrington J. C., Chen X., et al. A uniform system for microRNA annotation. RNA 2003; 9: 277–9
  • Johnston R. J., Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 2003; 426: 845–9
  • Brennecke J., Hipfner D. R., Stark A., Russell R. B., Cohen S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003; 113: 25–36
  • Xu P., Vernooy S. Y., Guo M., Hay B. A. The Drosophila microRNA Mir‐14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13: 790–5
  • Teleman A. A., Maitra S., Cohen S. M. Drosophila lacking microRNA miR‐278 are defective in energy homeostasis. Genes Dev 2006; 20: 417–22
  • Abbott A. L., Alvarez‐Saavedra E., Miska E. A., Lau N. C., Bartel D. P., Horvitz H. R., et al. The let‐7 MicroRNA family members mir‐48, mir‐84, and mir‐241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 2005; 9: 403–14
  • Lim L. P., Glasner M. E., Yekta S., Burge C. B., Bartel D. P. Vertebrate microRNA genes. Science 2003; 299: 1540
  • Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–97
  • Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R. H., Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21–4
  • Xie X., Lu J., Kulbokas E. J., Golub T. R., Mootha V., Lindblad‐Toh K., et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 2005; 434: 338–45
  • Bentwich I., Avniel A., Karov Y., Aharonov R., Gilad S., Barad O., et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37: 766–70
  • Berezikov E., Thuemmler F., van Laake L. W., Kondova I., Bontrop R., Cuppen E., et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38: 1375–7
  • Han J., Lee Y., Yeom K. H., Nam J. W., Heo I., Rhee J. K., et al. Molecular basis for the recognition of primary microRNAs by the Drosha‐DGCR8 complex. Cell 2006; 125: 887–901
  • Ruby J. G., Jan C., Player C., Axtell M. J., Lee W., Nusbaum C., et al. Large‐scale sequencing reveals 21U‐RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006; 127: 1193–207
  • Lu C., Tej S. S., Luo S., Haudenschild C. D., Meyers B. C., Green P. J. Elucidation of the small RNA component of the transcriptome. Science 2005; 309: 1567–9
  • Griffiths‐Jones S. miRBase: the microRNA sequence database. Methods Mol Biol 2006; 342: 129–38
  • Stark A., Brennecke J., Russell R. B., Cohen S. M. Identification of Drosophila MicroRNA targets. PLoS Biol 2003; 1: E60
  • Enright A. J., John B., Gaul U., Tuschl T., Sander C., Marks D. S. MicroRNA targets in Drosophila. Genome Biol 2003; 5: R1
  • Rajewsky N., Socci N. D. Computational identification of microRNA targets. Dev Biol 2004; 267: 529–35
  • Lewis B. P., Shih I. H., Jones‐Rhoades M. W., Bartel D. P., Burge C. B. Prediction of mammalian microRNA targets. Cell 2003; 115: 787–98
  • John B., Enright A. J., Aravin A., Tuschl T., Sander C., Marks D. S. Human MicroRNA targets. PLoS Biol 2004; 2: e363
  • Kiriakidou M., Nelson P. T., Kouranov A., Fitziev P., Bouyioukos C., Mourelatos Z., et al. A combined computational‐experimental approach predicts human microRNA targets. Genes Dev 2004; 18: 1165–78
  • Bentwich I. Prediction and validation of microRNAs and their targets. FEBS Lett 2005; 579: 5904–10
  • Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38(Suppl)S8–13
  • Lim L. P., Lau N. C., Garrett‐Engele P., Grimson A., Schelter J. M., Castle J., et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–73
  • Farh K. K., Grimson A., Jan C., Lewis B. P., Johnston W. K., Lim L. P., et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005; 310: 1817–21
  • Stark A., Brennecke J., Bushati N., Russell R. B., Cohen S. M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 2005; 123: 1133–46
  • Sethupathy P., Megraw M., Hatzigeorgiou A. G. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 2006; 3: 881–6
  • Grimson A., Farh K. K., Johnston W. K., Garrett‐Engele P., Lim L. P., Bartel D. P. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105
  • Robins H., Li Y., Padgett R. W. Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A 2005; 102: 4006–9
  • Zhao Y., Samal E., Srivastava D. Serum response factor regulates a muscle‐specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436: 214–20
  • Long D., Lee R., Williams P., Chan C. Y., Ambros V., Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol 2007; 14: 287–94
  • Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20
  • Ambros V., Chen X. The regulation of genes and genomes by small RNAs. Development 2007; 134: 1635–41
  • Ambros V. A hierarchy of regulatory genes controls a larva‐to‐adult developmental switch in C. elegans. Cell 1989; 57: 49–57
  • Slack F. J., Basson M., Liu Z., Ambros V., Horvitz H. R., Ruvkun G. The lin‐41 RBCC gene acts in the C. elegans heterochronic pathway between the let‐7 regulatory RNA and the LIN‐29 transcription factor. Mol Cell 2000; 5: 659–69
  • Li Y., Wang F., Lee J. A., Gao F. B. MicroRNA‐9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 2006; 20: 2793–805
  • Li Q. J., Chau J., Ebert P. J., Sylvester G., Min H., Liu G., et al. miR‐181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–61
  • Bartel D. P., Chen C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5: 396–400
  • Kawahara Y., Zinshteyn B., Sethupathy P., Iizasa H., Hatzigeorgiou A. G., Nishikura K. Redirection of silencing targets by adenosine‐to‐inosine editing of miRNAs. Science 2007; 315: 1137–40
  • Naguibneva I., Ameyar‐Zazoua M., Polesskaya A., Ait‐Si‐Ali S., Groisman R., Souidi M., et al. The microRNA miR‐181 targets the homeobox protein Hox‐A11 during mammalian myoblast differentiation. Nat Cell Biol 2006; 8: 278–84
  • Chen C. Z., Li L., Lodish H. F., Bartel D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–6
  • Krichevsky A. M., Sonntag K. C., Isacson O., Kosik K. S. Specific microRNAs modulate embryonic stem cell‐derived neurogenesis. Stem Cells 2006; 24: 857–64
  • Esau C., Kang X., Peralta E., Hanson E., Marcusson E. G., Ravichandran L. V., et al. MicroRNA‐143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–5
  • Kwon C., Han Z., Olson E. N., Srivastava D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 2005; 102: 18986–91
  • Sokol N. S., Ambros V. Mesodermally expressed Drosophila microRNA‐1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 2005; 19: 2343–54
  • Zhao Y., Ransom J. F., Li A., Vedantham V., von Drehle M., Muth A. N., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA‐1‐2. Cell 2007; 129: 303–17
  • van Rooij E., Sutherland L. B., Qi X., Richardson J. A., Hill J., Olson E. N. Control of stress‐dependent cardiac growth and gene expression by a microRNA. Science 2007; 316: 575–9
  • Thai T. H., Calado D. P., Casola S., Ansel K. M., Xiao C., Xue Y., et al. Regulation of the germinal center response by microRNA‐155. Science 2007; 316: 604–8
  • Rodriguez A., Vigorito E., Clare S., Warren M. V., Couttet P., Soond D. R., et al. Requirement of bic/microRNA‐155 for normal immune function. Science 2007; 316: 608–11
  • Poy M. N., Eliasson L., Krutzfeldt J., Kuwajima S., Ma X., Macdonald P. E., et al. A pancreatic islet‐specific microRNA regulates insulin secretion. Nature 2004; 432: 226–30
  • Krutzfeldt J., Rajewsky N., Braich R., Rajeev K. G., Tuschl T., Manoharan M., et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–9
  • Chang S., Johnston R. J Jr., Frokjaer‐Jensen C., Lockery S., Hobert O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 2004; 430: 785–9
  • Kataoka Y., Takeichi M., Uemura T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells 2001; 6: 313–25
  • Giraldez A. J., Cinalli R. M., Glasner M. E., Enright A. J., Thomson J. M., Baskerville S., et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005; 308: 833–8
  • Harfe B. D., McManus M. T., Mansfield J. H., Hornstein E., Tabin C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 2005; 102: 10898–903
  • Bernstein E., Kim S. Y., Carmell M. A., Murchison E. P., Alcorn H., Li M. Z., et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–7
  • Cao X., Pfaff S. L., Gage F. H. A functional study of miR‐124 in the developing neural tube. Genes Dev 2007; 21: 531–6
  • Wu J., Xie X. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 2006; 7: R85
  • Conaco C., Otto S., Han J. J., Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 2006; 103: 2422–7
  • Vo N., Klein M. E., Varlamova O., Keller D. M., Yamamoto T., Goodman R. H., et al. A cAMP‐response element binding protein‐induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 2005; 102: 16426–31
  • Kosik K. S. The neuronal microRNA system. Nat Rev Neurosci 2006; 7: 911–20
  • Martin K. C., Barad M., Kandel E. R. Local protein synthesis and its role in synapse‐specific plasticity. Curr Opin Neurobiol 2000; 10: 587–92
  • Lugli G., Larson J., Martone M. E., Jones Y., Smalheiser N. R. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain‐dependent manner. J Neurochem 2005; 94: 896–905
  • Ashraf S. I., McLoon A. L., Sclarsic S. M., Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 2006; 124: 191–205
  • Schratt G. M., Tuebing F., Nigh E. A., Kane C. G., Sabatini M. E., Kiebler M., et al. A brain‐specific microRNA regulates dendritic spine development. Nature 2006; 439: 283–9
  • Greer J. M., Capecchi M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 2002; 33: 23–34
  • Hornstein E., Mansfield J. H., Yekta S., Hu J. K., Harfe B. D., McManus M. T., et al. The microRNA miR‐196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005; 438: 671–4
  • Yekta S., Shih I. H., Bartel D. P. MicroRNA‐directed cleavage of HOXB8 mRNA. Science 2004; 304: 594–6
  • Calin G. A., Dumitru C. D., Shimizu M., Bichi R., Zupo S., Noch E., et al. Frequent deletions and down‐regulation of micro‐RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99: 15524–9
  • Johnson S. M., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., et al. RAS is regulated by the let‐7 microRNA family. Cell 2005; 120: 635–47
  • Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., et al. Reduced expression of the let‐7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–6
  • Lee Y. S., Dutta A. The tumor suppressor microRNA let‐7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–30
  • Mayr C., Hemann M. T., Bartel D. P. Disrupting the pairing between let‐7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–9
  • Iorio M. V., Ferracin M., Liu C. G., Veronese A., Spizzo R., Sabbioni S., et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–70
  • Ciafre S. A., Galardi S., Mangiola A., Ferracin M., Liu C. G., Sabatino G., et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005; 334: 1351–8
  • Chan J. A., Krichevsky A. M., Kosik K. S. MicroRNA‐21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029–33
  • Lu J., Getz G., Miska E. A., Alvarez‐Saavedra E., Lamb J., Peck D., et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–8
  • Calin G. A., Sevignani C., Dumitru C. D., Hyslop T., Noch E., Yendamuri S., et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101: 2999–3004
  • O'Donnell W. T., Warren S. T. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 2002; 25: 315–38
  • Ishizuka A., Siomi M. C., Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002; 16: 2497–508
  • Plante I., Provost P. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA‐Guided Translational Repression?. J Biomed Biotechnol 2006; 2006: 16806
  • Schaefer A., O'Carroll D., Tan C. L., Hillman D., Sugimori M., Llinas R., et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 2007; 204: 1553–8
  • Brennecke J., Stark A., Russell R. B., Cohen S. M. Principles of microRNA‐target recognition. PLoS Biol 2005; 3: e85
  • Saunders M. A., Liang H., Li W. H. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 2007; 104: 3300–5
  • Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibe B., et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006; 38: 813–8
  • Abelson J. F., Kwan K. Y., O'Roak B. J., Baek D. Y., Stillman A. A., Morgan T. M., et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 2005; 310: 317–20
  • Perkins D. O., Jeffries C., Sullivan P. Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 2005; 10: 69–78
  • Perkins D. O., Jeffries C. D., Jarskog L. F., Thomson J. M., Woods K., Newman M. A., et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007; 8: R27
  • Jones‐Rhoades M. W., Bartel D. P., Bartel B. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 2006; 57: 19–53
  • Arnosti D. N., Barolo S., Levine M., Small S. The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development 1996; 122: 205–14
  • Hornstein E., Shomron N. Canalization of development by microRNAs. Nat Genet 2006; 38(Suppl)S20–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.