623
Views
47
CrossRef citations to date
0
Altmetric
Articles

Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses

, , , , , , , & show all
Pages 161-175 | Received 06 Aug 2013, Accepted 12 Dec 2013, Published online: 05 Feb 2014

References

  • AbramoffMD, MagelhaesPJ, RamSJ. 2004. Image processing with image. J Biophotonics Int. 11:36–42.
  • AngerK. 1996. Salinity tolerance of the larvae and first juveniles of a semiterrestrial grapsid crab, Armases miersii (Rathbun). J Exp Mar Biol Ecol. 202:205–223.10.1016/0022-0981(96)00022-6
  • BarryJP, TyrellT, HanssonL, PlattnerG, GattusoJ. 2010. Atmospheric CO2 targets for ocean acidification pertubation experiments. Luxembourg: Publications Office of the European Union.
  • BenjaminiY, HochbergY. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological). 57:289–300.
  • ByrneM. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol: An Annu Rev. 49:1–42.
  • ByrneM, HoM, WongE, SoarsNA, SelvakumaraswamyP, Shepard-BrennandH, DworjanynSA, DavisAR. 2011. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc R Soc London, Ser B – Biol Soc. 278:2376–2383.
  • CaldeiraK, WickettME. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature. 425:365–365.10.1038/425365a
  • CaldeiraK, WickettME. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res. 110:c09S04.doi:10.1029/2004JC002671.
  • CaldwellGS, FitzerS, GillespieCS, PickavanceG, TurnballE, BentleyMG. 2011. Ocean acidification takes sperm back in time. Invertebrate Reprod Dev. 55:217–221.10.1080/07924259.2011.574842
  • CanadellJG, Le QuéréC, RaupachMR, FieldCB, BuitenhuisET, CiaisP, ConwayTJ, GillettNP, HoughtonRA, MarlandG. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Nat Acad Sci. 104:18866–18870.10.1073/pnas.0702737104
  • CarrRS, BiedenbachJM, NipperM. 2006. Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Contam Toxicol. 51:573–579.10.1007/s00244-006-0009-3
  • CatarinoA, De RidderC, GonzalezM, GallardoP, DuboisP. 2012. Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biol. 35:455–461.10.1007/s00300-011-1074-2
  • ClarkD, LamareM, BarkerM. 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol. 156:1125–1137.10.1007/s00227-009-1155-8
  • CrimRN, SundayJM, HarleyCDG. 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J Exp Mar Biol Ecol. 400:272–277.10.1016/j.jembe.2011.02.002
  • DamHG. 2013. Evolutionary adaptation of marine zooplankton to global change. Annu Rev Mar Sci. 5:349–370.10.1146/annurev-marine-121211-172229
  • DicksonAG, MilleroFJ. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Papers. 34:1733–1743.10.1016/0198-0149(87)90021-5
  • DoneySC, FabryVJ, FeelyRA, KleypasJA. 2009. Ocean acidification: the other CO2 Problem. Annu Rev Mar Sci. 1:169–192.10.1146/annurev.marine.010908.163834
  • DooSS, DworjanynSA, FooSA, SoarsNA, ByrneM. 2011. Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii.. ICES J Mar Sci. 69:460–464. doi:10.1093/icesjms/fsr123.
  • DupontS, HavenhandJ, ThorndykeW, PeckL, ThorndykeM. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser. 373:285–294.10.3354/meps07800
  • DupontS, Ortega-Martı′nezO, ThorndykeM. 2010. Impact of near-future ocean acidification on echinoderms. Ecotoxicology. 19:449–462.10.1007/s10646-010-0463-6
  • DupontS, LundveB, ThorndykeM. 2010. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J Exp Zool Part B. 314B.
  • DupontS, DoreyN, StumppM, MelznerF, ThrondykeM. 2013. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol. 160:1835–1843. doi: 10.1007/s00227-012-1921-x.
  • FitzerSC, CaldwellGS, CloseAJ, ClareAS, Upstill-GoddardRC, BentleyMG. 2012. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Biol Ecol. 418-419:30–36.10.1016/j.jembe.2012.03.009
  • FitzerSC, CaldwellGS, ClareAS, Upstill-GoddardRC, BentleyMG. 2013. Response of copepods to elevated pCO2 and environmnetal copper as co-stressors – A multigenerational study. PLoS ONE. 8:e71257.10.1371/journal.pone.0071257
  • GazeauF, GattusoJ-P, DawberC, PronkerAE, PeeneF, PeeneJ, HeipCHR, MiddelburgJJ. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences. 7:2051–2060.10.5194/bg-7-2051-2010
  • GezeliusG. 1962. Adaptation of the sea urchin Psammechinus miliaris to different salinities. Zoologiska Bidrag Fran Uppsala. 35:329–337.
  • GuinotteJM, FabryVJ. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences. 1134:320–342.10.1196/nyas.2008.1134.issue-1
  • HammerH, HammerB, WattsS, LawrenceA, LawrenceJ. 2006. The effect of dietary protein and carbohydrate concentration on the biochemical composition and gametogenic condition of the sea urchin Lytechinus variegates. J Exp Mar Biol Ecol. 334:109–121.10.1016/j.jembe.2006.01.015
  • HavenhandJN, ButtlerF-R, ThorndykeMC, WilliamsonJE. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol. 18:R651–R652.10.1016/j.cub.2008.06.015
  • HinegardnerRT. 1969. Growth and development of the laboratory cultured sea urchin. Biol Bull. 137:465–475.10.2307/1540168
  • HintzJL, LawrenceJM. 1994. Acclimation of gametes to reduced salinity prior to spawning in Luidia clathrata (Echinodermata: Asteroidea). Mar Biol. 120:443–446.10.1007/BF00680219
  • HoughtonJT, DingY, GriggsDJ, NoguerM, Van der LindenPJ, DaiX, MaskellK, JohnsonCA. 2001. Climate change 2001: the scientific basis. Cambridge (UK): Cambridge University Press.
  • IPCC. The 4th assessment report of the IPCC. 2007. Cambridge: Cambridge Univeristy Press.
  • KellyMS. 2000. The reproductive cycle of the sea urchin Psammechinus miliaris (Echinodermata: Echinoidea) in a Scottish sea loch. J Mar Biol Assoc U. K.80:909–919.10.1017/S0025315400002897
  • KellyMS, HunterAJ, ScholfieldCL, McKenzieJD. 2000. Morphology and survivorship of larval Psammechinus miliaris (Gmelin) (Echinodermata: Echinoidea) in response to varying food quantity and quality. Aquaculture. 183:223–240.10.1016/S0044-8486(99)00296-3
  • KuriharaH. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser. 373:275–284.10.3354/meps07802
  • KuriharaH, ShirayamaY. 2004. Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser. 274:161–169.10.3354/meps274161
  • KuriharaH, ShimodeS, ShirayamaY. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J Oceanogr. 60:743–750.10.1007/s10872-004-5766-x
  • LevitanDR. 2006. The relationship between egg size and fertilization success in broadcast-spawning marine invertebrates. Integr Comp Biol. 46:298–311.10.1093/icb/icj025
  • LewisE, WallaceDWR. 1998. Carbon dioxide information analysis center. Oak Ridge, TN: Oak Ridge National Laboratory, US Department of Energy.
  • LiuH, KellyMS, CookEJ, BlackK, OrrH, ZhuJX, DongSL. 2007. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture. 264:263–278.10.1016/j.aquaculture.2006.12.022
  • MartinS, RichierS, PedrottiML, DupontS, CastejonC, GerakisY, KerrosME, OberhansliF, TeyssieJL, JeffreeR, GattusoJP. 2011. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol. 214:1357–1368.10.1242/jeb.051169
  • McEdwardLR, HerreraJC. 1999. Body form and skeletal morphometrics during larval development of the sea urchin Lytechinus variegatus Lamarck. J Exp Mar Biol Ecol. 232:151–176.10.1016/S0022-0981(98)00106-3
  • MehrbachC, CulbersonCH, HawleyJE, PytkowicxzRM. 1973. Measurement of apparent dissociation constants of carbomic acid in seawater at armospheric pressure. Limnol Oceanogr. 18:897–907.10.4319/lo.1973.18.6.0897
  • MoulinL, CatarinoAI, ClaessensT, DuboisP. 2011. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar Pollut Bull. 62:48–54.10.1016/j.marpolbul.2010.09.012
  • NickellLA, BlackKD, HughesDJ, OvernellJ, BrandT, NickellTD, BreuerE, MartynS. 2003. Bioturbation, sediment fluxes and benthic community structure around a salmon cage farm in Loch Creran, Scotland. Journal of Experimental Marine Biology and Ecology. 285:221–233.10.1016/S0022-0981(02)00529-4
  • O’DonnellMJ, TodghamAE, SewellMA, HammondLM, RuggieroK, FangueNA, ZippayML, HofmannGE. 2010. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser. 398:157–171.10.3354/meps08346
  • ParkerLM, RossPM, O’ConnerWA, BoryskoL, RaftosDA, PortnerH-O. 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biol. 18:82–92.10.1111/j.1365-2486.2011.02520.x
  • PeckLS, ClarkMS, MorleySA, MasseyA, RossettiH. 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol. 23:248–256.10.1111/fec.2009.23.issue-2
  • PespeniMH, SanfordE, GaylordB, HillTM, HosfeltJD, JarisHK, LaVigneM, LenzEA, RussellAD, YoungMK, PalumbiSR. 2013. Evolutionary change during experimental ocean acidification. Proc Nat Acad Sci. 110:6937–6942.10.1073/pnas.1220673110
  • RiesJB, CohenAL, McCorkleDC. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 37:1131–1134.10.1130/G30210A.1
  • Royal Society. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. London: The Royal Society, p. 223.
  • ShirayamaY, ThorntonH. 2005. Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res. 110:C09S08.
  • ShpigelM, McBrideSC, MarcianoS, LupatschI. 2004. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture. 232:343–355.10.1016/S0044-8486(03)00539-8
  • SokalRR, RohlfFJ. 1995. Biometry: the principles and practice of statistics in biological research. New York: Freeman.
  • StumppM, WrenJ, MelznerF, ThorndykeMC, DupontST. 2011. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A – Mol Integr Physiol. 160:331–340.
  • SucklingCC. 2012. Calcified marine invertebrates: the effects of ocean acidification [ Phd Thesis]. Cambridge (UK): University of Cambridge.
  • SucklingCC, SymondsRC, KellyMS, YoungAJ. 2011. The effect of artificial diets on gonad colour and biomass in the edible sea urchin Psammechinus miliaris. Aquaculture. 318:335–342.10.1016/j.aquaculture.2011.05.042
  • SucklingCC, ClarkMS, PeckLS, CookEJ. 2014. Experimental influence of pH on the early life-stages of sea urchins I: different rates of introduction give rise to different responses. Invertebrate Reprod Dev. doi: 10.1080/07924259.2013.875950.
  • SymondsRS, KellyMS, SucklingCC, YoungAJ. 2009. Carotenoids in the gonad and gut of the edible sea urchin Psammechinus miliaris. Aquaculture. 288:120–125.10.1016/j.aquaculture.2008.11.018
  • TalmageSC, GoblerCJ. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Nat Acad Sci. 107:17246–17251.10.1073/pnas.0913804107
  • UthickeS, SoarsNFooS, ByrneM. 2013. Effects of elevated CO2 and the effect of parent acclimation on development in the tropical Pacific sea urchin Echinometra mathaei. Mar Biol. 160:1913–1926. doi: 10.1007/s00227-012-2023-5.
  • WatsonSA, SouthgatePC, TylerPA, PeckLS. 2009. Early larval development of the sydney rock oyster saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. J Shellfish Res. 28:431–437.10.2983/035.028.0302
  • WiddicombeS, NeedhamHR. 2007. Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Mar Ecol Prog Ser. 341:111–122.10.3354/meps341111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.