300
Views
20
CrossRef citations to date
0
Altmetric
Genetics of Crop Domestication

Evolution of wild barley at “Evolution Canyon”: adaptation, speciation, pre-agricultural collection, and barley improvement

Pages 22-32 | Received 15 Aug 2013, Accepted 30 Jun 2014, Published online: 01 Oct 2014

References

  • Barash D, Sikorski J, Perry EB, Nevo E, Nudler E. 2006. Adaptive mutations in RNA-based regulatory mechanisms: computational and experimental investigations. Isr J Ecol Evol. 52:263–279.
  • Brown AHD, Zohary D, Nevo E. 1978. Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity. 41:49–62.
  • Bures P, Pavliček T, Horova L, Nevo E. 2004. Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at “Evolution Canyon,” Israel. Ann Bot. 93:529–535.
  • Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, Hu Y-G, Sameri M, Li S, Zhao S, et al. 2011. An ATP-binding cassette subfamily G-full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci USA. 108:12354–12359.
  • Close TJ, Choi DW, Venegas M, Salvi S, Tuberosa R, Ryabushkina N, Turuspekov Y, Nevo E. 2000. Allelic variation in wild and cultivated barley at the Dhn4 locus, which encodes a major drought-induced and seed protein, DHN4. 8th International Barley Genetics Symposium 22–27 Oct 2000, Adelaide, South Australia.
  • Cronin JK, Bundock PC, Henry RJ, Nevo E. 2007. Adaptive climatic molecular evolution in wild barley at the lsa defense locus. Proc Natl Acad Sci USA. 104:2773–2778.
  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen A, Beiles A, Chen G, Zhang G. 2012. Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA. 109:16969–16973.
  • Dvornyk V, Vinogradova O, Nevo E. 2002. Long-term microclimatic stress causes rapid adaptive radiation of kaiABC clock gene family in a cyanobacterium, Nostoc linckia, from “Evolution Canyons” I and II, Israel. Proc Natl Acad Sci. USA. 99:2082–2087.
  • Feldman M, Kislev ME. 2007. Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr J Plant Sci. 55:207–221.
  • Gasmanova N, Lebeda A, Doležalova I, Cohen T, Pavliček T, Fahima T, Nevo E. 2007. Genome size variation of Lotus peregrinus at “Evolution Canyon” I Microsite, Lower Nahal Oren, Mt. Carmel, Israel. Acta Biologica Cracoviensia, Ser. Botanica. 49(1):39–46.
  • Grosman L, Ashkenazy H, Belfer-Cohen A. 2005. The Natufian occupation of Nahal Oren, Mount Carmel, Israel – the lithic evidence. Palaéorient. 31(12):5–26.
  • Gupta PK, Sharma PK, Balyan HS, Roy JK, Sharma S, Beharav A, Nevo E. 2002. Polymorphism at rDNA loci in barley and its relation with climatic variables. Theor Appl Genet. 104:473–481.
  • Hadid Y, Pavlíček T, Beiles A, Raz S, Nevo E. 2014. Sympatric speciation of spiny mice Acomys at “Evolution Canyon,” Israel. Proc Natl Acad Sci USA. 111:1043–1048.
  • Harlan JR. 1976. Barley. In: Simmonds NW, editor. Evolution of crop plants. London: Longman Press; p. 93–98.
  • Harlan JR, Zohary D. 1966. Distribution of wild wheats and barley. Science. 153:1074–1080. http://faostat.fao.org/faostat.
  • Hübner, S, Rashkovetsky E, Kim YB, Oh JH, Michalak K, Weiner D, Michalak P. 2013. Genome differentiation of Drosophila melanogaster from a microclimate contrast in “Evolution Canyon,” Israel. Proc Natl Acad Sci USA. 110:21059–21064.
  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA. 97:6603–6607.
  • Kim YB, Oh JH, McIver LJ, Rashkovetsky E, Michalak K, Garner, HR, Kang L, Nevo E, Koroi AB, Michalak P. 2014. Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel. Proc Natl Acad Sci USA. 111(29):10630–10635.
  • Kislev ME. 1997. Early agriculture and Palaeoecology of Netiv Hagdud. In: Bar-Yosef O, Gopher A, editors. An early Neolithic village in the Jordan Village. Part I. The archaeology of Netiv Hagdud. Cambridge, MA: Peabody Museum of Archaeology and Ethnology; p. 209–236.
  • Kislev ME, Nadel D, Carmi I. 1992. Epi\Palaeolithic (19,000 BP cereal and fruit diet at Ohallo II, Sea of Galilee, Israel. Rev Palaeobot Palynol. 73:161–166.
  • Korol AB, Rashkovetsky E, Iliadi K, Nevo E. 2006. Drosophila flies in “Evolution Canyon” as a model for incipient sympatric speciation. Proc Natl Acad Sci USA. 103:18184–18189.
  • Kossover O, Frenkel Z, Korol AB, Nevo E. 2009. Genetic diversity and stress of Ricotia lunaria in “Evolution Canyon,” Israel. J Hered. 100:432–440.
  • Krugman T, Satish N, Vinogradova ON, Beharav A, Kashi Y, Nevo E. 2001. Genome diversity in the cyanobacterium Nostoc linckia at “Evolution Canyon” Israel, revealed by inter-HIP1 size polymorphisms. Evol Ecol Res. 3:899–915.
  • Lamb BC, Mandaokar S, Bahsoun B, Grishkan I, Nevo E. 2008. Differences in spontaneous mutation frequencies as function of environmental stress in soil fungi at “Evolution Canyon,” Israel. Proc Natl Acad Sci USA. 105:5792–5796.
  • Lev E, Kislev ME, Bar-Yosef O. 2005. Mousterian vegetal food in Kebara cave, Carmel. J Archaeol Sci. 32:457–484.
  • Ma X, Sela H, Jiao G, Li C, Wang A, Pourkheirandish M, Weiner D, Sakuma S, Krugman T, Nevo E, Komatsuda T, Korol AB, Chen G. 2012. Population-genetic analysis of HvABCG31 promoter sequence in wild barley Hordeum vulgare ssp. spontaneum). BMC Evol Biol. 12:188.
  • Morell PL, Clegg MT. 2007. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA. 104:3289–3294.
  • Nei M. 1987. Molecular evolutionary genetics. New York: Columbia University Press.
  • Nevo, E. 1975–2014. Nevo list of “Wild Cereals”, 1975–2014 [Internet]; [updated September 2014]. Available from: http://evolution.haifa.ac.il/index.php/28-people/publications/153-publications-nevo-cereal
  • Nevo E. 1991–2014. Nevo list of “Evolution Canyons”, 1991–2014 [internet]; [updated September 2014]. Available from: http://evolution.haifa.ac.il/index.php/28-people/publications/154-publications-nevo-evol-canyon
  • Nevo E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P, editor. Barley: genetics, molecular biology and biotechnology. Wallingford, UK: CAB International; p. 19–43.
  • Nevo E. 1995. Asian, African and European biota meet at “Evolution Canyon,” Israel: local tests of global biodiversity and genetic diversity patterns. Proc Roy Soc Lond B. 262:149–155.
  • Nevo E. 1997. Evolution in action across phylogeny caused by microclimatic stresses at “Evolution Canyon.” Theor Pop Biol. 52:231–243.
  • Nevo E. 1998. Molecular evolution and ecological stress at global, regional and local scales: the Israeli perspective. J Exp Zool. 282:95–119.
  • Nevo E. 2001. Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci USA. 98:6233–6240.
  • Nevo E. 2006a. Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genet Resour. 4:36–46.
  • Nevo E. 2006b. “Evolution Canyon”: a microcosm of life's evolution focusing on adaptation and speciation. Isr J Ecol Evol. 52:485–506.
  • Nevo E. 2009. Evolution in action across life at “Evolution Canyon,” Israel. Trends Evol Biol. 1:e3.
  • Nevo E. 2011. Selection overrules gene flow at “Evolution Canyons,” Israel. In: Urbano KV, editor. Advances in genetics research. Vol. 5. Hauppauge, NY: Nova Science Publishers, Inc.; p. 67–89.
  • Nevo E. 2012a. Evolution of wild barley and barley improvement. In: Zhang G, et al., editors. Advance in barley sciences. Dordrecht, the Netherlands: Zhejiang University Press and Springer Verlag; p. 1–23.
  • Nevo E. 2012b. “Evolution Canyon,” a potential microscale monitor of global warming across life. Proc Natl Acad Sci USA. 109:2960–2965.
  • Nevo E, Apelbaum-Elkaher I, Garty J, Beiles A. 1997. Natural selection causes microscale allozyme diversity in wild barley and a lichen at “Evolution Canyon” Mt. Carmel, Israel. Heredity. 78:373–382.
  • Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, Russell JR, Powell W. 2005. Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in “Evolution Canyon,” Israel. Biol J Linn Soc. 84:205–224.
  • Nevo E, Bolshakova MA, Martyn GI, Musatenko LI, Sytnik KM, Pavliček T, Beharav A. 2000. Drought and light anatomical adaptive leaf strategies in three woody species caused by microclimatic selection at “Evolution Canyon,” Israel. Isr J Plant Sci. 48:33–46.
  • Nevo E, Fragman O, Dafni A, Beiles A. 1999. Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon,” Lower Nahal Oren, Mount Carmel, Israel. Isr J Plant Sci. 47:49–59.
  • Nevo E, Fu Y-B, Pavlicek T, Khalifa S, Tavasi M, Beiles A. 2012. Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci USA. 109:3412–3415.
  • Nevo E, Rashkovetsky E, Pavliček T, Korol AB. 1998. A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity. 80:9–16.
  • Parnas T. 2006. Evidence for incipient sympatric speciation in wild barley, Hordeum spontaneum, at “Evolution Canyon,” Mt. Carmel, Israel, based on hybridization and physiological and genetic diversity estimates. MSc Thesis, University of Haifa.
  • Pavlíček T, Bures P, Horová L, Raskina O, Nevo E. 2008. Genome size microscale divergence of Cyclamen persicum in Evolution Canyon, Israel. Cent Eur J Biol. 3:83–90.
  • Pavliček T, Sharon D, Kravchenko V, Saaroni H, Nevo E. 2003. Microclimatic interslope differences underlying biodiversity contrasts in “Evolution Canyon,” Mt. Carmel, Israel. Isr J Earth Sci. 52:1–9.
  • Rashkovetsky E, Iliadi K, Mickalak P, Lupu A, Nevo E, Feder ME, Korol AB. 2006. Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient. Heredity. 96:353–359.
  • Raz S, Graham JH, Hel-Or H, Pavliček T, Nevo E. 2011. Developmental instability of vascular plants in contrasting microclimates at “Evolution Canyon.” Biol J Linn Soc. 102:786–797.
  • Saleem M, Lamb BC, Nevo E. 2001. Inherited differences in crossing-over and gene conversion frequencies between wild strains of Sordaria fimicola from “Evolution Canyon.” Genetics. 159:1573–1593.
  • Satish N, Krugman T, Vinogradova ON, Nevo E, Kashi Y. 2001. Genome evolution of the cyanobacterium Nostoc linckia under sharp microclimatic divergence at “Evolution Canyon,” Israel. Microbial Ecol. 42:306–316.
  • Sharaf K, Horovă L, Pavliček T, Nevo E, Bureš P. 2010. Genome size and base composition in Oryzaephilius surinamensis (Coleoptera: Sylvanidae) and differences between native (feral) and silo pest populations in Israel. J Stored Products Res. 46:34–37.
  • Shen Y, Lansky EP, Nevo E. 2010. Wild barley-harbinger of biodiversity. Biodiversity. 11(3–4):19–25.
  • Shen Y, Lansky EP, Traber M, Nevo E. 2013. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at “Evolution Canyon.” Chem Biodivers. 10:1696–1705.
  • Shen Y, Lebold K, Lansky EP, Traber MG, Nevo E. 2011. “Tocol-omic” diversity in wild barley. Chem Biodivers. 8:2322–2330.
  • Sikorski J, Nevo E. 2005. Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel. Proc Natl Acad Sci USA. 102:15924–15929.
  • Sikorski J, Nevo E. 2006. On the necessity to study natural bacterial populations-the model of Bacillus simplex from “Evolution Canyon” I and II, Israel. Isr J Ecol Evol. 52:527–542.
  • Sikorski J, Nevo E. 2007. Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of “Evolution Canyons” I and II, Israel. Environ. Microbiol. 9:716–726.
  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E. 2008. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon,” Mount Carmel, Israel. PLoS ONE. 3(8):e2993:1–5.
  • Timmusk S, Paalme V, Lagercrantz U, Nevo E. 2009. Detection and quantification of Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real-time PCR. J Appl Microbiol. 107:736–745.
  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E. 2011. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE. 6(3):e17968.
  • Wei YM, Baum BR, Nevo E, Zheng Y. 2005. Does domestication mimic speciation? 1. A population-genetic analysis of Hordeum spontaneum and Hordeum vulgare based on AFLP and evolutionary considerations. Can J Bot. 83:1496–1512.
  • Weiss E, Wetterstorm W, Nadel D, Bar-Yosef O. 2004. The broad spectrum revisited: Evidence from plant remains. Proc Natl Acad Sci USA. 101:9551–9555.
  • Yang Z, Zhang T, Bolshoy A, Beharav A, Nevo E. 2009. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at “Evolution Canyon,” Mount Carmel, Israel. Mol Ecol. 18:2063–2075.
  • Yang Z, Zhang T, Li G, Nevo E. 2012. Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at “Evolution Canyon,” Israel. Genetica. 139:1429–1438.
  • Zhang T, Li GR, Yang Z, Nevo E. 2014. Adaptive evolution of duplicated hsp 17 genes in wild barley from microclimatically divergent sites of Israel. Genet Mol Res. 13:1220–1232.
  • Zohary D. 1969. The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In: Ucko PJ, Dimbleby GW, editors. The domestication and exploitation of plants and animals. London: Duckworth; p. 47–66.
  • Zohary D, Hopf M, Weiss E. 2012. Domestication of plants in the Old World. 4th ed. Oxford: Oxford University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.