246
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Optimal plant growth-promoting concentration of Azospirillum brasilense inoculated to cucumber, lettuce and tomato seeds varies between bacterial strains

, &
Pages 145-152 | Received 01 Mar 2015, Accepted 07 Apr 2015, Published online: 20 May 2015

References

  • Abbass Z, Okon Y. 1993. Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biol Biochem. 25:1075–1083.
  • Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA. 2007. Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn plant. 1:68–82.
  • Bashan Y, Holguin G. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol. 43:103–121.
  • Bashan Y, Holguin G, Bashan LED. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol. 50:521–577.
  • Bashan Y, Holguin G, Lifshitz R. 1993. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, editors. Methods in plant molecular biology and biotechnology. Boca Raton, FL: Taylor & Francis; p. 331–345.
  • Bashan Y, Levanony H, Whitmoyer RE. 1991. Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J Gen Microbiol. 137:187–196.
  • Bashan Y, Ream Y, Levanony H, Sade A. 1989. Non-specific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd. Can J Bot. 67:1317–1324.
  • Cassán F, Perrig D, Sgroy V, Luna V. 2011. Basic and technological aspects of phytohormone production by microorganisms: Azospirillum sp. as a model of plant growth promoting rhizobacteria. In: Maheshwari DK, editor. Bacteria in agrobiology: plant nutrient management. Germany: Taylor & Francis; p. 141–182.
  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol. 45:28–35.
  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L. 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta. 221:297–303.
  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 212:155–164.
  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol. 28:871–879.
  • Fallik E, Okon Y, Fischer M. 1988. Growth response of maize roots to Azospirillum inoculation: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem. 20:45–49.
  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G. 2008. Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol. 64:459–467.
  • Gholami A, Shahsavani S, Nezarat S. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad Sci Eng Tech. 37:2070–3740
  • Hadas R, Okon Y. 1987. Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertility Soils. 5:241–247.
  • Harari A, Kigel J, Okon Y. 1988. Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil. 110:275–282.
  • Hartmann A, Baldani J. 2006. The genus Azospirillum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes. New York: Taylor & Francis; p. 115–140.
  • Kapulnik Y, Feldman M, Okon Y, Henis Y. 1985. Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat. Soil Biol Biochem. 17:509–515.
  • Madhaiyan M, Poonguzhali S, Yim WJ, Kim KA, Kang BG, Sa TM. 2007. Optimization of the inoculation dose of plant growth promoting bacteria Azospirillum brasilense strain CW903 assessed in tomato, red pepper and rice under greenhouse condition. Korean J Soil Science Fert. 40:249–254.
  • Mangmang JS, Deaker R, Rogers G. 2014. Effects of plant growth promoting rhizobacteria on seed germination characteristics of tomato and lettuce. J Trop Crop Sci. 1:35–40.
  • Mangmang JS, Deaker R, Rogers G. 2015. Germination characteristics of cucumber influenced by plant growth promoting rhizobacteria. Int J Vegetable Sci. doi: 10.1080/19315260.2014.938850
  • Miransari M, Smith D. 2014. Plant hormones and seed germination. Environ Exp Bot. 99:110–121.
  • Moghaddam MJM, Emtiazi G, Salehi Z. 2012. Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agric Sci Tech. 14:985–994.
  • Morgenstern E, Okon Y. 1987. The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolor X Sorghum sudanense. Arid Soil Res Rehab. 1:115–127.
  • Okon Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3:223–228.
  • Okon Y, Kapulnik Y. 1986. Development and function of Azospirillum-inoculated roots. Plant Soil. 90:3–16.
  • Patten CL, Glick BR. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 68:3795–3801.
  • Puente ME, Holguin G, Glick BR, Bashan Y. 1999. Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. FEMS Microbiol Ecol. 29:283–292.
  • Ribaudo C, Krumpholz E, Cassán F, Bottini R, Cantore M, Curá J. 2006. Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul. 25:175–185.
  • Saleh-Lakha S, Glick B. 2006. Plant growth-promoting bacteria. In: van Elsas JD, Jansson JK, Trevors JT, editors. Modern soil microbiology. New York: Taylor & Francis; p. 503–520.
  • Steenhoudt O, Vanderleyden J. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev. 24:487–506.
  • Thuler DS, Floh EIS, Handro W, Barbosa HR. 2003. Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol. 37:174–178.
  • Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255:571–586.
  • Zahir ZA, Muhammad A, Frankenberger WT, Jr. 2003. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agro. 81:97–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.