Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 65, 2018 - Issue 5
202
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Methane adsorption in the low–middle-matured Neoproterozoic Xiamaling marine shale in Zhangjiakou, Hebei

ORCID Icon, ORCID Icon, , &
Pages 691-710 | Received 19 Jun 2017, Accepted 31 Jan 2018, Published online: 29 Apr 2018

References

  • Bao, Z. D., Chen, J. F., & Zhang, S. C. (2004). Developing environment and control factors for source rocks of Middle–Upper Proterozoic in North China. Science in China. Series D: Earth Sciences, 34(S1), 114–119.
  • Bernard, S., Horsfield, B., & Schulz, H. (2012). Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Marine and Petroleum Geology, 1(31), 70–89.
  • Bian, L. Z., Zhang, S. C., & Zhang, B. M. (2005). Red algal fossils discovered from the Neoproterozoic Xiamaling oil shales, Xiahuayuan town of Hebei province. Acta Micropalaeontologica Sinica, 22(03), 209–216.
  • Chalmers, G. R. L., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1–3), 223–239.
  • Chalmers, G. R. L., & Bustin, R. M. (2008). Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(01), 1–21.
  • Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(06), 1099–1119.
  • Chen, J., & Xiao, X. M. (2014). Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel, 129(04), 173–181.
  • Chen, L., Jiang, Z. X., & Liu, K. Y. (2017). Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development. Journal of Natural Gas Science and Engineering, 46, 1–15.
  • Chen, L., Lu, Y. C., & Jiang, S. (2015). Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China. Marine & Petroleum Geology, 65, 232–246.
  • Chen, P., & Xiao, X. M. (2013). Gas content of organic-rich shales with very high maturities. Journal of China Coal Society, 38(05), 737–741.
  • Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938.
  • Dai, S. F., Li, T., & Jiang, Y. (2012). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. International Journal of Coal Geology, 137, 92–110.
  • Dubinin, M. M. (1989). Foundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Pure and Applied Chemistry, 11(27), 1841–1843.
  • Gao, L. Z., Zhang, C. H., & Shi, X. Y. (2007). Zircon SHRIMP U–Pb dating of the tuffbed in the Xiamaling Formation of the Qingbaikou system in North China. Geological Bulletin of China, 26(03), 249–255.
  • Gareth, R. L., Chalmers, R., & Bustin, M. l. (2008). Lower Cretaceous gas shales in northeastern British Columbia, Part I geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 1(56), 1–21.
  • Gasparik, M., Bertier, P., & Gensterblum, Y. (2014a). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123(02), 34–51.
  • Gasparik, M., Ghanizadeh, A., & Bertier, P. (2012). High-Pressure methane sorption isotherms of black shales from the Netherlands. Energy & Fuels, 26(08), 4995–5004.
  • Gasparik, M., Rexer, T. F. T., & Aplin, A. C. (2014b). First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales. International Journal of Coal Geology, 132, 131–146.
  • Gensterblum, Y., Hemert, V. P., & Billemont, P. (2009). European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13), 2958–2969.
  • Gensterblum, Y., Merkel, A., & Busch, A. (2014). Gas saturation and CO2 enhancement potential of coalbed methane reservoirs as a function of depth. AAPG Bulletin, 98(02), 395–420.
  • Guo, H. J., Jia, W. L., & Peng, P. A. (2014). The composition and its impact on the methane sorption of lacustrine shales from the Upper Triassic Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 57(02), 509–520.
  • Hao, F., Zou, H. Y., & Lu, Y. C. (2013). Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bulletin, 97(08), 1325–1346.
  • Hildenbrand, A., Krooss, B. M., & Busch, A. (2006). Evolution of methane sorption capacity of coal seams as a function of burial history — a case study from the Campine Basin, NE Belgium. International Journal of Coal Geology, 66(03), 179–203.
  • Hu, H. Y., Zhang, T. W., & Wiggins-Camacho, J. D. (2015). Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis. Marine and Petroleum Geology, 59, 114–128.
  • Jarvie, D. M., Hill, R. J., & Ruble, T. E. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(04), 475–499.
  • Ji, L. M., Ma, X. X., & Xia, Y. Q. (2014). Relationship between methane adsorption capacity of clay minerals and micropore volume. Natural Gas Geoscience, 25(02), 141–152.
  • Ji, L. M., Qiu, J. L., & Zhang, T. W. (2012a). Experiments on methane adsorption of common clay minerals in shale. Earth Science-Journal of China University of Geosciences, 37(05), 1043–1050.
  • Ji, L. M., Zhang, T. W., & Milliken, K. L. (2012b). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.
  • Kaneko, K., & Murata, K. (1997). An analytical method of micropore filling of a supercritical gas. Adsorption, 3(03), 197–208.
  • Krooss, B. M., Bergen, V. F., & Gensterblum, Y. (2002). High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal of Coal Geology, 51(02), 69–92.
  • Li, T. F., Tian, H., & Xiao, X. M. (2017). Geochemical characterization and methane adsorption capacity of overmature organic-rich Lower Cambrian shales in northeast Guizhou region, southwest China. Marine and Petroleum Geology, 86, 858–873.
  • Lin, Y. B., Ma, D. M., & Liu, Y. H. (2012). Experiment of the influence of temperature on coalbed methane adsorption. Coal Geology & Exploration, 40(06), 24–28.
  • Liu, Z. F., Li, Q. Q., & Guan, S. (2015). Adsorption characteristics and main controlling factors on the Paleozoic shale in South China region. Natural Gas Geoscience, 26(09), 1689–1695.
  • Liu, H. L., Wang, H. Y., & Fang, C. H. (2016). The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China. Earth Science Frontiers, 23(02), 48–54.
  • Liu, Y., Zhong, N. N., & Tian, Y. J. (2011). The oldest oil accumulation in China: Meso-Proterozoic Xiamaling Formation bituminous sandstone reservoirs. Petroleum Exploration and Development, 38(04), 503–512.
  • Loucks, R. G., Reed, R. M., & Ruppel, S. C. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(12), 848–861.
  • Loucks, R. G., & Ruppel, S. C. (2007). Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(04), 579–601.
  • Murata, K., El-Merraoui, M., & Kaneko, K. (2001). A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study. The Journal of Chemical Physics, 114(09), 4196–4205.
  • Murata, K., Jin, M., & Kaneko, K. (2002). A simple determination method of the absolute adsorbed amount for high pressure gas adsorption. Carbon, 40(03), 425–428.
  • Nie, H. K., & Zhang, J. C. (2010). Shale gas reservoir distribution geological law, characteristics and suggestions. Journal of Central South University (Science and Technology), 41(02), 700–708.
  • Olodipo, E. O., & Randy, J. (2004). High surface areas caused by smectitic interstratification of kaolinite and illite in Athabasca oil sands. Applied Clay Science, 25(1–2), 37–47.
  • Ottiger, S., Pini, R., & Storti, G. (2008). Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Adsorption, 14(4–5), 539–556.
  • Pan, L., Xiao, X. M., & Tian, H. (2016). Geological models of gas in place of the Longmaxi shale in Southeast Chongqing, South China. Marine and Petroleum Geology, 73, 433–444.
  • Pan, L., Xiao, X. M., & Zhou, Q. (2015). Influence of soluble organic matter on characterization of shale reservoir. Natural Gas Geoscience, 26(09), 1729–1736.
  • Peng, Y. J., Li, Z. H., & Ji, H. J. (2012). Effect of soluble organic matter in coal on gas sorption and desorption characteristics. Journal of China Coal Society, 37(09), 1472–1476.
  • Pini, R., Ottiger, S., & Burlini, L. (2010). Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature. International Journal of Greenhouse Gas Control, 4(01), 90–101.
  • Raut, U., Famá, M., & Teolis, B. D. (2007). Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. Journal of Chemical Physics, 127(20), 1–6.
  • Rexer, T. F. T., Benham, M. J., & Aplin, A. C. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(06), 3099–3109.
  • Ross, D. J. K., & Bustin, R. M. (2008). Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bulletin, 92(01), 87–125.
  • Ross, D. J. K., & Bustin, M. R. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(06), 916–927.
  • Sakurovs, R., Day, S., & Weir, S. (2007). Application of a modified Dubinin−Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy & Fuels, 21(02), 992–997.
  • Setzmann, U., & Wagner, W. A. (1991). New equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa. Journal of Physical & Chemical Reference Data, 6(20), 1061–1155.
  • Stach, E. (Ed.). (1982). Stach's textbook of coal petrology (3rd ed., pp. 295–312). Berlin, Germany: Gebrüder Borntraeger.
  • Tian, H., Li, T. F., & Zhang, T. W. (2016). Characterization of methane adsorption on overmature Lower Silurian–Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. International Journal of Coal Geology, 156, 36–49.
  • Tissot, B. P., Durand, B., & Espitalie, J. (1974). Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 58(03), 499–506.
  • Wang, M. Z., Liu, S. B., & Ren, R. J. (2015). Pore characteristics and methane adsorption of clay minerals in shale gas reservoir. Geological Review, 61(01), 207–216.
  • Wei, L., Mastalerz, M., & Schimmelmann, A. (2014). Influence of soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. International Journal of Coal Geology, 132, 38–50.
  • Weniger, P., Kalkreuth, W., & Busch, A. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84, 190–205.
  • Xiao, X. M., Wilkins, R. W. T., & Liu, D. H. (2000). Investigation of thermal maturity of lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance – A Tarim Basin case study. Organic Geochemistry, 31(10), 1041–1052.
  • Xue, H. Q., Jiang, P. X., & Xu, R. N. (2016). Characterization of the reservoir in Lower Silurian and Lower Cambrian shale of south Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 29, 150–159.
  • Yang, F., Ning, Z. F., & Zhang, R. (2015). Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China. International Journal of Coal Geology, 146, 104–117.
  • Zhang, T. W., Ellis, G. S., & Ruppel, S. C. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47(06), 120–131.
  • Zhang, J. C., Jin, Z. J., & Yuan, M. S. (2004). Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 24(07), 15–18.
  • Zhang, S. C., Zhang, B. M., & Bian, L. Z. (2005). Red algal fossils discovered from the Neoproterozoic Xiamaling oil shales, Xiahuayuan town of Hebei province. Acta Micropalaeontologica Sinica, 22(02), 121–126.
  • Zhang, S. C., Zhang, B. M., & Bian, L. Z. (2007). The Xiamaling oil shale generated through rhodophyal over 800 Ma ago. Science in China, Series D: Earth Sciences, 37(05), 636–643.
  • Zhang, H., Zhu, Y. M., & Xia, X. H. (2013). Comparison and explanation of the absorptivity of organic matters and clay minerals in shales. Journal of China Coal Society, 38(05), 812–816.
  • Zhu, J. X. (2016). Composition difference of soluble organic matter in different media in mudstones and its significance for shale oil enrichment. Petroleum Geology and Experiment, 38(04), 429–437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.