Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 65, 2018 - Issue 5
376
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

4D modelling of fault reactivation using complete paleostress tensors from the Cooper–Eromanga Basin, Australia

ORCID Icon & ORCID Icon
Pages 661-681 | Received 08 Apr 2017, Accepted 07 Apr 2018, Published online: 15 May 2018

References

  • Alexander, E. M., Gravestock, D. I., Cubitt, C., & Chaney, A. (1998). Lithostratigraphy and environments of deposition. In D. I. Gravestock, J. E. Hibburt, & J. F. Drexel (Eds.), The petroleum geology of South Australia. Vol. 4: Cooper Basin. South Australia: Department of Primary Industries and Resources. Report Book, 98/9.
  • Amrouch, K. (2010). Apport de l'analyse microstructurale à la comprehension des mécanismes de plissement. Exemples de structures plissées aux USA (Wyoming) et en Iran (Zagros). Paris, France: Thèse, Université Pierre et Marie Curie – Paris 6, 2010-03, 477 p.
  • Amrouch, K., Beaudoin, N., Lacombe, O., Bellahsen, N., & Daniel, J. M. (2011). Paleostress magnitudes in folded sedimentary rocks. Geophysical Research Letters, 38, L17301, doi:10.1029/2011GL048649
  • Amrouch, K., Lacombe, O., Bellahsen, N., Daniel, J. M., & Callot, J. P. (2010a). Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming. Tectonics, 29, TC1005, doi:10.1029/2009TC002525
  • Amrouch, K., Robion, P., Callot, J. P., Lacombe, O., Daniel, J. M., Bellahsen, N., & Faure, J. L. (2010b). Constraints on deformation mechanisms during folding provided by rock physical properties: A case study at Sheep Mountain anticline (Wyoming, USA). Geophysical Journal International, 182(3), 1105–1123.
  • Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402.
  • Angelier, J. (1989). From orientation to magnitudes in paleostress determinations using fault slip data. Journal of Structural Geology, 11(1), 37–50.
  • Apak, S. N., Stuart, W. J., Lemon, N. M., & Wood, G. (1997). Structural evolution of the Permian–Triassic Cooper Basin, Australia: Relation to hydrocarbon trap styles. AAPG Bulletin, 81, 533–555.
  • Arboit, F., Amrouch, K., Collins, A. S., King, R., & Morley, C. (2015). Determination of the tectonic evolution from fractures, faults, and calcite twins on the southwestern margin of the Indochina Block. Tectonics, 34, 1576–1599, doi:10.1002/2015TC003876
  • Arboit, F., Amrouch, K., Morley, C., Collins, A. S., & King, R. (2017). Palaeostress magnitudes in the Khao Khwang fold-thrust belt, new insights into the tectonic evolution of the Indosinian orogeny in central Thailand. Tectonophysics, 710–711, 266–276, doi:10.1016/j.tecto.2017.01.008
  • Barton, C. A., Zoback, M. D., & Moos, D. (1995). Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683–686.
  • Baudon, C., & Cartwright, J. (2008). The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30(8), 1072–1084.
  • Beaudoin, N., Koehn, D., Lacombe, O., Lecouty, A., Billi, A., Aharonov, E., & Parlangeau, C. (2016). Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy. Tectonics, 35(7), 1687–1712.
  • Beaudoin, N., Leprêtre, R., Bellahsen, N., Lacombe, O., Amrouch, K., Callot, J. P., Emmanuel, L., & Daniel, J. M. (2012). Structural and microstructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): New insights into the Sevier and Laramide orogenic stress build-up in the Bighorn Basin. Tectonophysics, 576, 20–45.
  • Bergerat, F. (1985). Déformations cassantes et champs de contrainte tertiaires dans la plate-forme européenne. Doctoral dissertation (unpublished). Paris, France: Université Pierre et Marie Curie-Paris VI.
  • Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.
  • Borazjani, S., Kulikowski, D., Amrouch, K., & Bedrikovetsky, P. (2018). Composition changes of hydrocarbons during secondary petroleum migration. The APPEA Journal, 58, in press.
  • Boreham, C. J., & Hill, A. J. (1998). Source rock distribution and hydrocarbon geochemistry. In D. I. Gravestock, J. E. Hibburt, & J. F. Drexel (Eds). The petroleum geology of South Australia. Vol. 4: Cooper Basin, South Australia. Department of Primary Industries and Resources. Report Book, 98/9. Adelaide, SA: Department of Primary Industries and Resources.
  • Bradshaw, M. T. (1993). Australian petroleum systems. PESA Journal, 21, 43–53.
  • Burgin, H. B., Amrouch, K., Rajabi, M., Kulikowski, D., & Holford, S. P. (2018). Determining structural environments through natural fracture and calcite twin analysis: A case study in the Otway Basin. The APPEA Journal, 58, in press.
  • Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (1996). Growth of vertically segmented normal faults. Journal of Structural Geology, 18(12), 1389–1397.
  • Constantin, J., Laurent, P., Vergély, P., & Cabrera, J. (2007). Paleo-deviatoric stress magnitudes from calcite twins and related structural permeability evolution in minor faults: Example from the toarcian shale of the French Causses Basin, Aveyron, France. Tectonophysics, 429(1), 79–97.
  • Cooke, D., Tyiasning, S., & Abul Khair, H. (2016). Unexpected behaviors of stimulated fractures in the high-stress Cooper Basin. The Leading Edge, 35(1), 78–84.
  • Delaunay, B. (1934). Sur la sphère vide. Bulletin de l'Académie des Sciences de L'URSS, Classe des Sciences Mathématiques et Naturelles, 6, 793–800.
  • Deighton, I., & Hill, A. J. (1998). Thermal and Burial History. In D. I. Gravestock, J. E. Hibburt, & J. F. Drexel (Eds.), The petroleum geology of South Australia. Vol. 4: Cooper Basin, South Australia. Adelaide, SA: Department of Primary Industries and Resources. Report Book, 98/9.
  • Etchecopar, A. (1984). Étude des états de Contraintes en Tectonique Cassante et Simulation de Déformations Plastiques: Approche Mathématique. Doctorates-Sciences (unpublished thesis), 270 pp. Montpellier, France: Univ. Sci. et Tech. Du Languedoc.
  • Ferrill, D. A. (1998). Critical re-evaluation of differential stress estimates from calcite twins in coarse-grained limestone. Tectonophysics, 285(1), 77–86.
  • Ferrill, D. A., & Morris, A. P. (2003). Dilational normal faults. Journal of Structural Geology, 25, 183–196.
  • Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., & Morris, A. P. (1999). Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today, 9(5), 1–8.
  • Flottmann, T., Campagna, D. J., Hillis, R., & Warner, D. (2004). Horizontal microfractures and core discing in sandstone reservoirs, Cooper Basin, Australia. In PESA Eastern Australian Basins Symposium II, 19–22 September (pp. 689–694). Adelaide, SA: PESA.
  • Gatehouse, C. G. (1986). The geology of the Warburton Basin in South Australia. Australian Journal of Earth Sciences, 33, 161–180.
  • Glikson, A. Y., Uysal, I. T., Fitz Gerald, J. D., & Saygin, E. (2013). Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, north-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics, 589, 57–76.
  • Goodman, R. E. (1980). Introduction to Rock Mechanics. New York: John Wiley & Sons, 2, 576 p.
  • Gravestock, D. I., & Jensen-Schmidt, B. (1998). Structural setting. In D. I. Gravestock, J. E. Hibburt, & J. F. Drexel (Eds.), Petroleum Geology of South Australia, Volume 4 (pp. 47–67). Adelaide, SA: Primary Industries and Resources SA.
  • Grohmann, C. H., & Campanha, G. A. C. (2010). OpenStereo: Open source, cross-platform software for structural geology analysis. AGU 2010 Fall Meeting, San Francisco, California, Abstract IN31C-06, 2p.
  • Grohmann, C. H., Campanha, G. A. C., & Soares, Jr, A. V. (2011). OpenStereo: Programa Livre e multiplataforma. Análise de Dados Estruturais. In: XIII Simpósio Nacional de Estudos Tectônicos, 13 ( in Portuguese), 3p. Campinas, Brazil: University of São Paulo. http://www.igc.usp.br/pessoais/guano/downloads/Grohmann_etal_2011_13SNET_openstereo.pdf
  • Haines, P. W., Hand, M., & Sandiford, M. (2001). Palaeozoic synorogenic sedimentation in central and northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. Australian Journal of Earth Sciences, 48, 911–928.
  • Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2007). Fundamentals of rock mechanics. (4th ed.)., Oxford, UK: Blackwell Publishing.
  • Jamison, W. R., & Spang, J. H. (1976). Use of calcite twin lamellae to infer differential stress. Geological Society of America Bulletin, 87(6), 868–872.
  • Jolie, E., Moeck, I., & Faulds, J. E. (2015). Quantitative structural geological exploration of fault-controlled geothermal systems—A case study from the Basin-and-Range Province, Nevada (USA). Geothermics, 54, 54–67.
  • Kantsler, A. J., Prudence, T. J. C., Cook, A. C., & Zwigulis, M. (1983). Hydrocarbon habitat of the Cooper/Eromanga basin, Australia. Australian Petroleum Exploration Association Journal, 23, 75–92.
  • Korsch, R. J., Totterdell, J. M., Fomin, T., & Nicoll, M. G. (2009). Contractional structures and deformational events in the Bowen, Gunnedah and Surat basins, eastern Australia. Australian Journal of Earth Sciences, 56, 477–499.
  • Kuang, K. S. (1985). History and style of Cooper-Eromanga Basin structures. Exploration Geophysics, 16, 245–248.
  • Kulikowski, D. (2017). Modern Structural Analysis of Subsurface Provinces: A Case Study on the Cooper and Eromanga Basins, Australia (Doctoral dissertation, unpublished). Adelaide, SA: The Australian School of Petroleum, the University of Adelaide.
  • Kulikowski, D., & Amrouch, K. (2017). Combining geophysical data and calcite twin stress inversion to refine the tectonic history of subsurface and offshore provinces: A case study on the Cooper-Eromanga Basin, Australia. Tectonics, 36(3), 515–541, doi:10.1002/2016TC004366
  • Kulikowski, D., & Amrouch, K. (2018). 3D seismic analysis investigating the relationship between stratigraphic architecture and structural activity in the intra-cratonic Cooper and Eromanga Basins, Australia. Marine & Petroleum Geology, 91, 381–340, doi:10.1016/j.marpetgeo.2018.01.019
  • Kulikowski, D., Amrouch, K., & Cooke, D. (2016a). Geomechanical modelling of fault reactivation in the Cooper Basin, Australia. Australian Journal of Earth Sciences, 63(3), 295–314, doi:10.1080/08120099.2016.1212925
  • Kulikowski, D., Amrouch, K., Cooke, D., & Gray, M. E. (2018a). Basement Structural Architecture and Hydrocarbon Conduit Potential of Polygonal Faults in the Cooper-Eromanga Basin, Australia. Geophysical Prospecting, 66(2), 366–396. doi:10.1111/1365-2478.12531
  • Kulikowski, D., Amrouch, K., & Burgin, H. B. (2018b). Mapping permeable subsurface fracture networks: A case study on the Cooper Basin, Australia. Journal of Structural Geology, in press, doi:10.1016/j.jsg.2018.02.009
  • Kulikowski, D., Cooke, D., & Amrouch, K. (2016b). Constraining the distribution and relationship between overpressure, natural fracture density and temperature in the Cooper Basin. The APPEA Journal, 56, 11–28, doi:10.1071/AJ15002
  • Kulikowski, D., Hochwald, C., Cooke, D., & Amrouch, K. (2016c). A Statistical Approach to Assessing Depth Conversion Uncertainty on a Regional Dataset: Cooper-Eromanga Basin, Australia. ASEG-PESA-AIG 2016 Conference, Adelaide, extended abstract #200 (pp. 484–490), Adelaide, SA ASEG-PESA. doi:10.1071/ASEG2016ab200.
  • Kulikowski, D., Hochwald, C., & Amrouch, K. (2018c). An automated cross-validation method to assess seismic time-to-depth conversion accuracy: A case study on the Cooper and Eromanga basins, Australia. Geophysical Prospecting, in press.
  • Lacombe, O. (2001). Paleostress magnitudes associated with development of mountain belts: Insights from tectonic analyses of calcite twins in the Taiwan Foothills. Tectonics, 20(6), 834–849, doi:10.1029/2001TC900019
  • Lacombe, O. (2007). Comparison of paleostress magnitudes from calcite twins with contemporary stress magnitudes and frictional sliding criteria in the continental crust: Mechanical implications. Journal of Structural Geology, 29(1), 86–99.
  • Lacombe, O. (2010). Calcite twins, a tool for tectonic studies in thrust belts and stable orogenic forelands. Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles, 65(6), 809–838.
  • Lacombe, O., & Laurent, P. (1992). Determination of principal stress magnitudes using calcite twins and rock mechanics data. Tectonophysics, 202(1), 83–93.
  • Lacombe, O., & Laurent, P. (1996). Determination of deviatoric stress tensors based on inversion of calcite twin data from experimentally deformed monophase samples: Preliminary results. Tectonophysics, 255(3), 189–202.
  • Lacombe, O., Angelier, J., & Laurent, P. (1992). Determining paleostress orientations from faults and calcite twins: A case study near the Sainte-Victoire Range (southern France). Tectonophysics, 201(1), 141–156.
  • Lowe-Young, B. S., Mackie, S. I., & Heath, R. S. (1997). The Cooper-Eromanga petroleum system, Australia: Investigation of essential elements and processes. Indonesian Petroleum Association. Proceedings of the Petroleum Systems of SE Asia and Australasia Conference (pp. 199–211). Jakarta: Indonesian Petroleum Association, Indonesia.
  • Mavromatidis, A. (2006). Burial/exhumation histories for the Cooper-Eromanga Basins and implications for hydrocarbon exploration, eastern Australia. Basin Research, 18, 351–373.
  • Mildren, S. D., Hillis, R. R., Dewhurst, D. N., Lyon, P. J., Meyer, J. J., & Boult, P. J. (2005). FAST: A new technique for geomechanical assessment of the risk of reactivation-related breach of fault seals. In P. Boult & J. Kaldi (Eds.), Evaluating fault and cap rock seals (Vol. 2, pp. 73–85). AAPG Hedberg Series 2. Tulsa, OK: AAPG.
  • Moeck, I., Kwiatek, G., & Zimmermann, G. (2009). Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. Journal of Structural Geology, 31, 1174–1182.
  • Morris, A., Ferrill, D. A., & Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24, 275–278.
  • Muller, R. D., Dyksterhuis, S., & Rey, P. (2012). Australian paleo-stress fields and tectonic reactivation over the past 100 Ma. Australian Journal of Earth Sciences, 59, 13–28.
  • Nelson, E. J., Chipperfield, S. T., Hillis, R. R., Gilbert, J., & McGowen, J. (2007). Using geological information to optimize fracture stimulation practices in the Cooper Basin, Australia. Petroleum Geoscience, 13(1), 3–16.
  • Phillips, L. J., Crowley, J. L., Mantle, D. J., Esterle, J. S., Nicoll, R. S., McKellar, J. L., & Wheeler, A. (2018). U–Pb geochronology and palynology from Lopingian (upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia. Australian Journal of Earth Sciences, 65(2), 153–173, doi:10.1080/08120099.2018.1418431
  • Pokalai, K., Kulikowski, D., Johnson, Jr., R. L., Haghighi, M., & Cooke, D. (2016). Development of a new approach for hydraulic fracturing in tight sand with pre-existing natural fractures. The APPEA Journal, 56, 225–238, doi:10.1071/AJ15017
  • Preiss, W. V. (2000). The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100(1–3), 21–63.
  • Reches, Z. E., Baer, G., & Hatzor, Y. (1992). Constraints on the strength of the upper crust from stress inversion of fault slip data. Journal of Geophysical Research: Solid Earth, 97(B9), 12481–12493.
  • Reynolds, S. D., Mildren, S. D., Hillis, R. R., Meyer, J. J., & Flottmann, T. (2005). Maximum horizontal stress orientations in the Cooper Basin, Australia. implications for plate-scale tectonics and local stress sources. Geophysical Journal International, 160, 331–343.
  • Reynolds, S. D., Mildren, S. D., Hillis, R. R., & Meyer, J. J. (2006). Constraining stress magnitudes using petroleum exploration data in the Cooper-Eromanga Basins, Australia. Tectonophysics, 415, 123–140.
  • Robson, A. G. (2017). Normal fault growth analysis using 3D seismic datasets located along Australia's southern margin (Doctoral dissertation, unpublished). School of Physical Sciences, the University of Adelaide. Adelaide, SA: University of Adelaide.
  • Robson, A. G., Holford, S. P., King, R. C., & Kulikowski, D. (2017). Structural evolution of horst and half-graben structures proximal to a transtensional fault system determined using 3D seismic data from the Shipwreck Trough, offshore Otway Basin, Australia. Marine and Petroleum Geology, in press, doi:10.1016/j.marpetgeo.2017.10.028
  • Rowe, K. J., & Rutter, E. H. (1990). Palaeostress estimation using calcite twinning: Experimental calibration and application to nature. Journal of Structural Geology, 12(1), 1–17.
  • Sibson, R. H. (1990). Conditions for fault-valve behaviour. In R. J. Knipe & E. H. Rutter (Eds.), Deformation mechanisms, rheology and tectonics (pp. 15–28). London, UK: Geological Society, London, Special Publication No. 54.
  • Sibson, R. H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18, 1031–1042.
  • Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J. A., & Mazzoli, S. (2015). A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges. Earth-Science Reviews, 141, 82–104.
  • Tripathy, V., & Saha, D. (2015). Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in cratonic interior–Evidence from the Proterozoic Cuddapah basin, India. Journal of Structural Geology, 77, 62–81.
  • Turner, F. J. (1953). Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. American Journal of Science, 251(4), 276–298.
  • Turner, F. J., Griggs, D. T., & Heard, H. (1954). Experimental deformation of calcite crystals, Geological Society of the American Bulletin, 65(9), 883–934.
  • Watterson, J., Walsh, J., Nicol, A., Nell, P. A. R., & Bretan, P. G. (2000). Geometry and origin of a polygonal fault system. Journal of the Geological Society, 157(1), 151–162.
  • Williams, G. D., Powell, C. M., & Cooper, M. A. (1989). Geometry and kinematics of inversion tectonics. In M. A. Cooper & G. D. Williams (Eds.), Inversion Tectonics (pp. 3–15). London, UK: Geological Society, London, Special Publications, No. 44.
  • Wiprut, D., & Zoback, M. D. (2000). Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology, 28, 595–598.
  • Wiprut, D., & Zoback, M. D. (2002). Fault reactivation, leakage potential, and hydrocarbon column heights in the northern North Sea. Norwegian Petroleum Society Special Publications, 11, 203–219.
  • Yan, D. P., Zhang, B., Zhou, M. F., Wei, G. Q., Song, H. L., & Liu, S. F. (2009). Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault propagation folds: An example from the Mesozoic fold belt of South China. Journal of Structural Geology, 31, 150–162, doi:10.1016/j.jsg.2008.11.005
  • Zoback, M. D., & Harjes, H. P. (1997). Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal of Geophysical Research, 102(B8), 18477–18491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.