Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 66, 2019 - Issue 2
258
Views
8
CrossRef citations to date
0
Altmetric
Articles

Shale-gas accumulation and pore structure characteristics in the lower Cambrian Niutitang shales, Cen-gong Block, South China

, , , , , & show all
Pages 289-303 | Received 26 Jun 2018, Accepted 30 Aug 2018, Published online: 06 Jan 2019

References

  • Abramoff, M. D., Magelhaes, P. J., & Ram, S. J. (2005). Image processing with ImageJ. Biophotonics International, 11(7), 36–43.
  • Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations: SPE Paper 131772 presented at the SPE Unconventional Gas Conference, February 23–25, 2010. Pittsburgh, PA: SPE.
  • Bai, B., Elgmati, M., Zhang, H., & Wei, M. (2013). Rock characterization of Fayetteville shale gas plays. Fuel, 105(3), 645–652.
  • Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62(7), 1723–1732.
  • Bustin, R. M., Bustin, A. M. M., Cui, A., Ross, D., & Pathi, V. M. (2008). Impact of shale properties on pore structure and storage characteristics. Fort Worth, TX: Society of Petroleum Engineers.
  • Cao, T., Song, Z., Wang, S., & Xia, J. (2016). Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. Journal of Natural Gas Science & Engineering, 35, 882–895.
  • Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analysis: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119.
  • Chen, L., Jiang, Z., Liu, K., Wang, P., Ji, W., Gao, F., … Huang, H. (2016). Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China. Journal of Natural Gas Science & Engineering, 36, 773–785.
  • Chen, L., Jiang, Z., Liu, K., Tan, J., Gao, F., & Wang, P. (2017a). Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development. Journal of Natural Gas Science & Engineering, 46, 1–15.
  • Chen, L., Jiang, Z., Liu, K., & Gao, F. (2017b). Quantitative characterization of micropore structure for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale gas adsorption capacity. Advances in Geo-Energy Research, 1(2), 112–123.
  • Clarkson, C. R., Jensen, J. L., & Chipperfield, S. (2012). Unconventional gas reservoir evaluation: What do we have to consider? Journal of Natural Gas Science & Engineering, 8(9), 9–33.
  • Clarkson, C. R., Solano, N., Bustin, R. M., Bustin, A. M. M., Chalmers, G. R. L., He, L., … Blach, T. P. (2013). Pore structure characterization of North American shale gas reservoirs; using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103(1), 606–616.
  • Curtis, M. E., Cardott, B. J., Sondergeld, C. H., & Rai, C. S. (2012a). Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology, 103(23), 26–31.
  • Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., & Rai, C. S. (2012b). Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 96(4), 665–677.
  • Desbois, G., Urai, J. L., & Kukla, P. A. (2009). Morphology of the pore space in claystones – evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth, 4(1), 15–22.
  • Dong, T., Harris, N. B., Ayranci, K., Twemlow, C. E., & Nassichuk, B. R. (2015). Porosity characteristics of the Devonian Horn River Shale, Canada: Insights from lithofacies classification and shale composition. International Journal of Coal Geology, 141–142, 74–90.
  • Dong, T., Harris, N. B., Ayranci, K., Twemlow, C. E., & Nassichuk, B. R. (2017). The impact of composition on pore throat size and permeability in high maturity shales: Middle and upper Devonian Horn River Group, northeastern British Columbia, Canada. Marine & Petroleum Geology, 81, 220–236.
  • Feng, Z., Peng, Y., & Jin, Z. (2002). Lithofacies palaeogeography of the late Cambrian in China. Journal of Palaeogeography, 4(2), 1–11.
  • Gan, H., Nandi, S. P., & Walker, P. L. (1972). Nature of the porosity in American coals. Fuel, 51(4), 272–277.
  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area, and porosity. New York NY: Academic Press.
  • Guo, T. (2013). Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin. Journal of Earth Science, 24(6), 863–873.
  • Han, S., Zhang, J., Li, Y., Horsfield, B., Xuan, T., Wenli, J., & Chen, Q. (2013). Evaluation of Lower Cambrian shale in northern Guizhou province, South China: Implications for shale gas potential. Energy & Fuels, 27(6), 2933–2941.
  • Han, S., Zhang, J., Yang, C., Bai, S., Huang, L., Dang, W., & Wang, C. (2016). Well log evaluation of shale gas reservoirs and preservation conditions of lower Cambrian shale succession in Cengong Block of southeast Sichuan Basin, South China. Journal of Natural Gas Science & Engineering, 33, 337–346.
  • Han, Y., Horsfield, B., Wirth, R., Mahlstedt, N., & Bernard, S. (2017). Oil retention and porosity evolution in organic rich shales. AAPG Bulletin, 101(6), 807–827. doi:10.1306/09221616069.
  • He, C., He, S., Guo, X., Yi, J., Wei, Z., Shu, Z., & Peng, N. (2018). Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation’s first Member, Jiaoshiba Block, Sichuan Basin. Oil & Gas Geology, 39(3), 472–484.
  • Hemes, S., Desbois, G., Urai, J. L., Schröppel, B., & Schwarz, J. O. (2015). Multi-scale characterization of porosity in boom clay (hades-level, mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography. Microporous & Mesoporous Materials, 208, 1–20.
  • Houben, M. E., Desbois, G., & Urai, J. L. (2014). A comparative study of representative 2D microstructures in shaly and sandy facies of opalinus clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods. Marine & Petroleum Geology, 49(1), 143–161.
  • Hu, H., Hao, F., Lin, J., Lu, Y., Ma, Y., & Li, Q. (2017). Organic matter-hosted pore system in the Wufeng–Longmaxi (O3w–S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173, 40–50.
  • Janssen, C., Wirth, R., Reinicke, A., Rybacki, E., Naumann, R., Wenk, H.-R., & Dresen, G. (2011). Nanoscale porosity in SAFOD core samples (san Andreas fault). Earth & Planetary Science Letters, 301(1–2), 179–189.
  • Klaver, J., Desbois, G., Urai, J. L., & Littke, R. (2012). BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. International Journal of Coal Geology, 103(23), 12–25.
  • Kuila, U., & Prasad, M. (2013). Specific surface area and pore-size distribution in clays and shales. Geophysical Prospecting, 61(2), 341–362.
  • Lastoskie, C., Gubbins, K. E., & Quirke, N. (1993). Pore size distribution analysis of microporous carbons: A density functional theory approach. Journal of Physical Chemistry, 97(18), 1012–1016.
  • Liu, J., Ding, W., Wang, R., Yang, H., Wang, X., & Li, A. (2018a). Correlation analysis of element contents and mechanical characteristics of shale reservoirs: A case study in the Cengong Block, South China. Marine & Petroleum Geology, 91, 19–28.
  • Liu, J., Ding, W., Wang, R., Yang, H., Wang, X., & Li, A. (2018b). Methodology for quantitative prediction of fracture sealing with a case study of the lower Cambrian Niutitang Formation in the Cengong Block in South China. Journal of Petroleum Science & Engineering, 160, 565–581. doi:10.1016/j.petrol.2017.10.046
  • Liu, J., Yao, Y., Elsworth, D., Pan, Z., Sun, X., & Ao, W. (2016). Sedimentary characteristics of the lower Cambrian Niutitang shale in the southeast margin of Sichuan Basin, China. Journal of Natural Gas Science & Engineering, 36, 1140–1150.
  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12), 848–861.
  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.
  • Milliken, K. L., Rudnicki, M., Awwiller, D. N., & Zhang, T. (2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2), 177–200.
  • Milner, M., McLin, R., & Petriello, J. (2010). Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion-milled backscatter SEM methods. In Canadian Unconventional Resourecs and International Petroleum Conference, October 19–21, Calgary, Alberta, SPE Paper 138975 (pp. 1–10). Richardson, TX: Society of Petroleum Engineers. doi:10.2118/138975-MS.
  • Neimark, A. V., Lin, Y., Ravikovitch, P. I., & Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon, 47(7), 1617–1628.
  • Pan, L., Chen, G. H., Xu, J., & Xiao, X. M. (2013). Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area. Journal of China Coal Society, 38(38), 787–793.
  • Peng, N., He, S., Hao, F., He, X., Zhang, P., Zhai, G. … Yang, R. (2017). The pore structure and difference between Wufeng and Longmaxi Shales in Pengshui Area, southeastern Sichuan. Earth Science, 42(7), 1134–1146.
  • Ravikovitch, P. I., & Neimark, A. V. (2006). Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir the ACS Journal of Surfaces & Colloids, 22(26), 11171–11179.
  • Reed, R. M., & Loucks, R. G. (2007). Imaging nanoscale pores in the Mississippian Barnett Shale of the northern Fort Worth Basin (abs.): AAPG Annual Convention Abstracts, 16, 115.
  • Ross, D. J. K., & Bustin, R. M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine & Petroleum Geology, 26(6), 916–927.
  • Ruppel, S. C., & Loucks, R. G. (2008). Black mudrocks: Lessons and questions from the Mississippian Barnett Shale in the southern mid-continent. The Sedimentary Record, 6(2), 4–8.
  • Ruppert, L. F., Sakurovs, R., Blach, T. P., He, L., Melnichenko, Y. B., Mildner, D. F., … Alcantar-Lopez, L. (2013). A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water. Energy & Fuels, 27(2), 772–779.
  • Schieber, J. (2010). Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic. SPE-132370 SPE Unconventional Gas Conference, February 23–25, 2010, Pittsburgh, PA.
  • Seaton, N. A., Walton, J. P. R. B., & Quirke, N. (1989). A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon, 27(6), 853–861.
  • Shi, M., Yu, B., Xue, Z., Wu, J., & Yuan, Y. (2015). Pore characteristics of organic-rich shales with high thermal maturity: A case study of the Longmaxi gas shale reservoirs from well Yuye-1 in southeastern Chongqing, China. Journal of Natural Gas Science & Engineering, 26(4), 948–959.
  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems–with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603–619.
  • Sondergeld, C. H., Ambrose, R. J., Rai, C. S., & Moncrieff, J. (2010). Microstructural studies of gas shales: SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, February 23–25, 2010, SPE Paper 131771, 17p.
  • Tanko, N. L. (2011). Transport relationship in porous media as a model for oil reservoir rocks (Unpublished PhD thesis). University of Bath, Bath UK.
  • Wang, L. B., Kai, J., Zeng, W. T., Fu, J. L., & Song, Z. (2013). Characteristics of Lower Cambrian marine black shales and evaluation of shale gas prospective area in Qianbei Area, Upper Yangtze region. Acta Petrologica Sinica, 29(9), 3263–3278.
  • Wang, R., Ding, W., Zhang, Y., Wang, Z., Wang, X., He, J., … Dai, P. (2016). Analysis of developmental characteristics and dominant factors of fractures in Lower Cambrian marine shale reservoirs: A case study of Niutitang Formation in Cengong Block, Southern China. Journal of Petroleum Science & Engineering, 138, 31–49.
  • Wang, S., Zou, C., Dong, D., Wang, Y., Huang, J., & Guo, Z. (2014). Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3), 476–486.
  • Wang, Z., Lv, K., Wang, G., Deng, K., & Tang, D. (2010). Study on the shape control and photocatalytic activity of high-energy anatase Titania. Applied Catalysis B Environmental, 100(1-2), 378–385.
  • Washburn, E. W. (1921). The dynamics of capillary flow. Physical Review, 17(3), 273–283.
  • Washburn, E. W. (1921b). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 1096, 115–116.
  • Webb, P. A. (2001). An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data. Micromeritics Instrument Corp, Norcross, Georgia.
  • Wu, C., Tuo, J., Zhang, M., Sun, L., Qian, Y., & Liu, Y. (2016). Sedimentary and residual gas geochemical characteristics of the Lower Cambrian organic-rich shales in southeastern Chongqing, China. Marine & Petroleum Geology, 75, 140–150.
  • Xia, J., Wang, S., Cao, T., Yang, J., & Song, Z. (2015). The characteristics of pore structure and its gas storage capability of the Lower Cambrian shales from northern Guizhou Province. Natural Gas Geoscience, 26(9), 1744–1754 (in Chinese with English abstract).
  • Yang, F., Ning, Z. F., Wang, Q., Kong, D. T., Peng, K., & Xiao, L. F. (2014). Fractal characteristics of nanopore in shales. Natural Gas Geoscience, 25(4), 618–623.
  • Yang, R., Hao, F., He, S., He, C., Guo, X., Yi, J., … Hu, Q. (2017a). Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales. Marine and Petroleum Geology, 84, 225–242.
  • Yang, R., He, S., Yi, J. Z., & Hu, Q. H. (2016). Nano-scale pore structure and fractal dimension of organic-rich Wufeng–Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Marine & Petroleum Geology, 70, 27–45.
  • Yang, R., He, S., Hu, Q., Sun, M., Hu, D., & Yi, J. (2017b). Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China). Fuel, 197, 91–99.
  • Yu, J., Yu, J. C., Leung, M. K. P., Ho, W. K., Cheng, B., Zhao, X., … Zhao, J. (2003). Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous Titania. Journal of Catalysis, 217(1), 69–78.
  • Zeng, W., Ding, W., Zhang, J., Zhang, Y., Guo, L., Jiu, K., & Li, Y. (2013). Fracture development in Paleozoic shale of Chongqing area (South China). Part two: Numerical simulation of tectonic stress field and prediction of fractures distribution. Journal of Asian Earth Sciences, 75(8), 267–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.