Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 66, 2019 - Issue 4
253
Views
2
CrossRef citations to date
0
Altmetric
Articles

Sedimentary and drainage evolution of the Condamine Valley Transition Zone (eastern Australia)

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 531-545 | Received 23 Feb 2018, Accepted 06 Nov 2018, Published online: 30 Jan 2019

References

  • Anand, R., & Butt, C. (2003). Distribution and evolution of ‘laterites’ and lateritic weathering profiles, Darling Range, Western Australia. Australian Geomechanics, 38, 41–58.
  • André, M.-F., Hall, K., Bertran, P., & Arocena, J. (2008). Stone runs in the Falkland Islands: Periglacial or tropical? Geomorphology, 95(3-4), 524–543. doi:10.1016/j.geomorph.2007.07.006
  • Baertschi, P. (1976). Absolute 18O content of standard mean ocean water. Earth and Planetary Science Letters, 31(3), 341–344. doi:10.1016/0012-821X(76)90115-1
  • Barker, C. E. (1988). Geothermics of petroleum systems: Implications of the stabilization of kerogen thermal maturation after a geologically brief heating duration at peak temperature. In L. B. Magoon (Ed.), Petroleum systems of the United States (pp. 26–29). Reston VA: US Geological Survey, Bulletin 1870.
  • Barker, C. E., & Pawlewicz, M. (1986). The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In G. Buntebart & L. Stegena (Eds.), Paleogeothermics. Lecture notes in Earth sciences (vol. 5, pp. 79–93). Berlin, Heidelberg: Springer.
  • Barlow, J., & Cresswell, R. (2015a). Condamine interconnectivity research project: Daandine test site. Brisbane Qld: Jacobs.
  • Barlow, J., & Cresswell, R. (2015b). Condamine interconnectivity research project: Lone pine test site. Brisbane Qld: Jacobs.
  • Bartholomai, A. (1972). Notes on the fossiliferous Pleistocene fluvatile deposits of the eastern Darling Downs. Canberra ACT: Bureau of Mineral Resources Geology and Geophysics, Australia.
  • Bata, T. P. (2016). Widespread development of silcrete in the Cretaceous and evolution of the Poaceae Family of grass plants. Earth Science Research, 5(2), 1. doi:10.5539/esr.v5n2p1
  • Beckmann, G. G. (1984). Paleosols, pedoderms, and problems in presenting pedological data. Australian Geographer, 16(1), 15–21. doi:10.1080/00049188408702852
  • Bird, M. I., & Chivas, A. R. (1988). Oxygen isotope dating of the Australian regolith. Nature, 331(6156), 513–516. https://doi.org/10.1038/331513a0
  • Bird, M. I., & Chivas, A. R. (1989). Stable isotope geochronology of the Australian Regolith. Geochimica et Cosmochimica Acta, 53(12), 3239–3256. doi:https://doi.org/10.1016/0016-7037(89)90104-X
  • Bird, M. I., & Chivas, A. R. (1993). Geomorphic and palaeoclimatic implications of an oxygen‐isotope chronology for Australian deeply weathered profiles. Australian Journal of Earth Sciences, 40(4), 345–358. doi:10.1080/08120099308728086
  • Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., … Williams, I. S. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2), 115–140. doi:10.1016/j.chem-geo.2004.01.003
  • Blatt, H., & Brown, V. M. (1974). Prophylactic separation of heavy minerals. Journal of Sedimentary Research, 44, 260–261.
  • Brooks, A. P., Shellberg, J. G., Knight, J., & Spencer, J. (2009). Alluvial gully erosion: An example from the Mitchell fluvial megafan, Queensland, Australia. Earth Surface Processes and Landforms, 34(14), 1951–1969. https://doi.org/10.1002/esp.1883
  • Bull, W. B. (1972). Recognition of alluvial fan deposits in the stratigraphic record. Tulsa OK: SEPM Special Publications.
  • Burnham, A. K., & Sweeney, J. J. (1989). A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53(10), 2649–2657. doi:10.1016/0016-7037(89)90136-1
  • Butt, C., Lintern, M., & Anand, R. L. (2000). Evolution of regoliths and landscapes in deeply weathered terrain—implications for geochemical exploration. Ore Geology Reviews, 16(3-4), 167–183. doi:https://doi.org/10.1016/S0169-1368(99)00029-3
  • Chamley, H. (1989). Clay sedimentology. Berlin: Springer Science & Business Media.
  • Coffey Environments Australia Ltd. (2012). Arrow Energy Surat Gas Project – Groundwater impact assessment. Brisbane Qld: Coffey Environments Australia Ltd.
  • Cranfield, L. C. (2017). Mapping of Surat Basin coal seam gas reservoir units. Queensland Minerals and Energy Review Series. Brisbane Qld: Department of Natural Resources and Mines.
  • Dafny, E., & Silburn, D. M. (2014). Hydrogeology of the Condamine River Alluvial Aquifer – a critical review. Toowoomba Qld: University of Southern Queensland.
  • Davies, P. (2008). Sustainable Rivers Audit: SRA report 1. A report on the ecological health of rivers in the Murray-Darling Basin, 2004–2007. Canberra ACT: Murray–Darling Basin Commission.
  • Day, R., Whitaker, W., Murray, C., Wilson, I., & Grimes, K. (1983). Queensland geology: A companion volume to the 1: 2,500,000 scale geological map (1975). Brisbane Qld: Geological Survey of Queensland Publication 383.
  • Dequincey, O., Chabaux, F., Clauer, N., Sigmarsson, O., Liewig, N., & Leprun, J. C. (2002). Chemical mobilizations in laterites: Evidence from trace elements and 238U–234U–230Th disequilibria. Geochimica et Cosmochimica Acta, 66(7), 1197–1210. doi:10.1016/S0016-7037(01)00845-6
  • Draper, J., & Boreham, C. (2006). Geological controls on exploitable coal seam gas distribution in Queensland. APPEA Journal, 46(1), 343–366. doi:10.1071/AJ05019
  • Exon, N. F. (1976). Geology of the Surat Basin in Queensland. Canberra ACT: Australian Government Publishing Service.
  • Ferguson, J. A. (1969). Cainozoic erosion and sedimentation between Gympie and Brisbane. In K. S. W. Campbell (Ed.), Stratigraphy and palaeontology: Essays in honour of Dorothy Hill. Canberra ACT: ANU Press.
  • Fergusson, C. L., Henderson, R. A., & Offler, R. (2017). Chapter 13 – late Neoproterozoic to early Mesozoic sedimentary rocks of the Tasmanides, eastern Australia: Provenance switching associated with development of the East Gondwana active margin. In R. Mazumder (Ed.), Sediment provenance: Influences on compositional change from source to sink. Netherlands: Elsevier.
  • Fryirs, K., & Brierley, G. (1998). The character and age structure of valley fills in upper Wolumla Creek catchment, south coast, New South Wales, Australia. Earth Surface Processes and Landforms, 23(3), 271–287. https://doi.org/10.1002/(SICI)1096-9837(199803)23:3 < 271::AID-ESP867 > 3.0.CO;2-5.
  • Geological Survey Queensland (2016). HyloggingTM A new concept in logging core. Available: https://www.dnrm.qld.gov.au/__data/assets/pdf_file/0007/366919/hylogging-core.pdf [Accessed 22/3/17].
  • Hamilton, S., Esterle, J., & Sliwa, R. (2014). Stratigraphic and depositional framework of the Walloon Subgroup, eastern Surat Basin, Queensland. Australian Journal of Earth Sciences, 61(8), 1061–1080. doi:10.1080/08120099.2014.960000
  • Huxley, W. J. (1982). The hydrogeology, hydrology and hydrochemistry of the Condamine River Alluvium. Brisbane Qld: Department of Applied Geology, Queensland Institute of Technology.
  • Iverach, C. P., Beckmann, S., Cendón, D. I., Manefield, M., & Kelly, B. F. J. (2017). Biogeochemical constraints on the origin of methane in an alluvial aquifer: Evidence for the upward migration of methane from underlying coal measures. Biogeosciences, 14(1), 215–228. doi:10.5194/bg-14-215-2017
  • Iverach, C. P., Cendón, D. I., Hankin, S. I., Lowry, D., Fisher, R., France, J., … Kelly, B. F. J. (2015). Assessing connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, dissolved organic carbon and tritium. Scientific Reports, 5, 1–11. https://doi.org/10.1038/srep15996.
  • Kellet, J., & Stewart, G. (2013). Hydraulic connectivity between the Quaternary alluvium and GAB aquifers in the Surat Basin. In Poster presentation to the GAB researcher forum. Adelaide SA: Geoscience Australia.
  • Klohn Crippen Berger. (2010a). Central Condamine Alluvium Data Availability Report. Prepared for the Queensland Department of Environment and Resource Management.
  • Klohn Crippen Berger. (2010b). Central Condamine alluvium, stage II: conceptual hydrogeology study. Prepared for the Queensland Department of Environment and Resource Management.
  • Klohn Crippen Berger. (2011). Conceptualization of the Walloon Coal Measures beneath the Condamine Alluvium. Prepared for the Department of Environment and Resource Management.
  • Lane, W. (1979). Progress report on Condamine underground investigation to December 1978. Brisbane Qld: Queensland Water Resources.
  • MacPhail, M. (2007). Australian palaeoclimates: Cretaceous to Tertiary a review of palaeobotanical and related evidence to the year 2000. Perth WA: CRC LEME Special Volume Open File Report 151.
  • Martin, H. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66(3), 533–563. doi:10.1016/j.jaridenv.2006.01.009
  • Martinez, J. L., Raiber, M., & Cendon, D. L. (2017). Using 3D geological modelling and geochemical mixing models to characterise alluvial aquifer recharge sources in the upper Condamine River catchment, Queensland, Australia. Science of the Total Environment, 574, 1–18. doi:10.1016/j.scitotenv.2016.09.029
  • Milnes, A.-R., & Thiry, M. (1992). Silcretes. In I. P. Martini & W. Chesworth (Eds.), Weathering, soils & paleosols. Netherlands: Elsevier.
  • Mollan, R. G., Forbes, V. R., Jensen, A. R., Exon, N. F., & Gregory, C. M. (1972). Geology of the Eddystone, Taroom, and western part of the Mundubbera Sheet areas, Queensland. Canberra ACT: Bureau of Mineral Resources Report, 142 p.
  • Murphy, P., Schwarzbock, H., Cranfield, L. C., Withnall, I. W., & Murray, C. G. (1976). Geology of the Gympie 1: 250 000 sheet area. Brisbane Qld: Geological Survey of Queensland.
  • Nash, D., & Ullyott, J. (2007). Silcrete. In D. Nash & S. J. McLaren (Eds.), Geochemical sediments and landscapes (pp. 95–143). Oxford, UK: Blackwell.
  • Office of Groundwater Impact Assessment. (2016). Groundwater connectivity between the Condamine Alluvium and the Walloon Coal Measures. Brisbane Qld: Department of Natural Resources and Mines.
  • Owen, D. D. R., & Cox, M. E. (2015). Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. Science of the Total Environment, 523, 233–252. doi:10.1016/j.scitotenv.2015.03.115
  • Owen, D. D. R., Shoakar-Stash, O., Morgenstern, U., & Aravena, R. (2016). Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: New insights into CH4 origins. Scientific Reports, 6, 32407. doi:10.1038/srep32407
  • Palamara, D. R., Boero Rodriguez, V., Kellett, J., & Macaulay, S. (2010). Salt mapping in the Lower Macquarie area, Australia, using airborne electromagnetic data. Environmental Earth Sciences, 61(3), 613–623. doi:10.1007/s12665-009-0375-z
  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. doi:10.1039/C1JA10172B
  • Pearce, N. J., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., & Chenery, S. P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21(1), 115–144. doi:10.1111/j.1751-908X.1997.tb00538.x
  • Price, G. J., & Sobbe, I. H. (2005). Pleistocene palaeoecology and environmental change on the Darling Downs. Memoirs of the Queensland Museum, 51, 171–201.
  • Prosser, I. P., & Slade, C. J. (1994). Gully formation and the role of valley-floor vegetation, southeastern Australia. Geology, 22(12), 1127–1130. doi:10.1130/0091-7613(1994)022 < 1127:GFATRO >2.3.CO;2
  • Queensland Water Commission. (2012). Underground water impact report for the Surat Cumulative Management Area. Brisbane Qld: Department of Natural Resources and Mines, Queensland.
  • Raza, A., Hill, K., & Korsch, R. (2009). Mid-Cretaceous uplift and denudation of the Bowen and Surat Basins, eastern Australia: Relationship to Tasman Sea rifting from apatite fission-track and vitrinite-reflectance data. Australian Journal of Earth Sciences, 56(3), 501–531. doi:10.1080/08120090802698752
  • Reading, H. G. (1996). Sedimentary environments: Processes, facies and stratigraphy (3rd ed.). Oxford UK: Blackwell Scientific Publications.
  • Schodlok, M., Whitbourn, L., Huntington, J., Mason, P., Green, A., Berman, M., … Jolivet, M. (2016). HyLogger-3, A visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging: Functional description. Australian Journal of Earth Sciences, 63, 929–940, 1. doi: 10.1080/08120099.2016.1231133
  • Schumm, S. A. (1963). The disparity between present rates of denudation and orogeny. Washington DC: US Government Printing Office.
  • Scott, S., Anderson, B., Crosdale, P., Dingwall, J., & Leblang, G. (2007). Coal petrology and coal seam gas contents of the Walloon Subgroup—Surat Basin, Queensland, Australia. International Journal of Coal Geology, 70(1-3), 209–222.
  • Shaanan, U., Rosenbaum, G., & Campbell, M.J. (2019). Detrital fingerprint: The use of early Precambrian zircon age spectra as unique identifiers of Phanerozoic terranes. Earth and Planetary Science Letters, 506, 97–103.
  • Shaanan, U., Rosenbaum, G., & Sihombing, F. (2018). Continuation of the Ross–Delamerian Orogen: Insights from eastern Australian detrital-zircon data. Australian Journal of Earth Sciences, 65, 1123–1131. https://doi.org/10.1080/08120099.2017.1354916
  • Sharp, Z. D. (1990). A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54(5), 1353–1357. doi:10.1016/0016-7037(90)90160-M
  • Shaw, S., Flood, R., & Pearson, N. (2011). The New England batholith of eastern Australia: Evidence of silicic magma mixing from zircon 176Hf/177Hf ratios. Lithos, 126(1-2), 115–126. doi:10.1016/j.lithos.2011.06.011
  • Shields, D., & Esterle, J. (2015). Regional insights into the sedimentary organisation of the Walloon Subgroup, Surat Basin, Queensland. Australian Journal of Earth Sciences, 62(8), 949–967. doi:10.1080/08120099.2015.1127287
  • Shields, D., Bianchi, V., & Esterle, J. (2017). A seismic investigation into the geometry and controls upon alluvial architecture in the Walloon Subgroup, Surat Basin, Queensland. Australian Journal of Earth Sciences, 64(4), 455–469. doi:10.1080/08120099.2017.1312524
  • Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., … Norberg, N. (2008). Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1–35. doi:10.1016/j.chemgeo.2007.11.005
  • Summerfield, M. (1983). Silcrete as a palaeoclimatic indicator: Evidence from southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 41(1-2), 65–79. doi:10.1016/0031-0182(83)90076-7
  • Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bulletin, 74, 1559–1570.
  • Tardy, Y. (1992). Diversity and terminology of lateritic profiles. In I. P. Martini & W. Chesworth (Eds.), Weathering, soils and paleosols. (Volume 2, pp. 379–405). Netherlands: Elsevier.
  • Tardy, Y., & Nahon, D. (1985). Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+-kaolinite in bauxites and ferricretes: An approach to the mechanism of concretion formation. American Journal of Science, 285(10), 865–903.
  • Taylor, G., & Eggleton, R. (2017). Silcrete: An Australian perspective. Australian Journal of Earth Sciences, 64(8), 987–1016. doi:10.1080/08120099.2017.1318167
  • Thomas, M. F. (1994). Geomorphology in the tropics: A study of weathering and denudation in low latitudes. Chichester SXW: John Wiley & Sons.
  • Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. doi:10.1016/j.chemgeo.2012.04.021
  • Wainman, C., McCabe, P., Crowley, J., & Nicoll, R. (2015). U–Pb zircon age of the Walloon Coal Measures in the Surat Basin, southeast Queensland: Implications for paleogeography and basin subsidence. Australian Journal of Earth Sciences, 62(7), 807–816. doi:10.1080/08120099.2015.1106975
  • Watkins, J. (1967). The relationship between climate and the development of landforms in the Cainozoic rocks of Queensland. Journal of the Geological Society of Australia, 14(1), 153–168. doi:10.1080/00167616708728651
  • Webb, J. A., & Golding, S. D. (1998). Geochemical mass-balance and oxygen-isotope constraints on silcrete formation and its palaeoclimatic implications in southern Australia. Journal of Sedimentary Research, 68(5), 981–993. doi:10.2110/jsr.68.981
  • Yurtsever, Y., & Gat, J. (1981). Chapter 6, atmospheric waters. In J. R. Gat & R. Gonfiantini (Eds.), Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle (pp. 103–142). Vienna, Austria: International Atomic Energy Agency technical Reports Series No. 210.
  • Zeissink, H. (1971). Trace element behavior in two nickeliferous laterite profiles. Chemical Geology, 7(1), 25–36. https://doi.org/10.1016/0009-2541(71)90029-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.