2,871
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Glaciations at high-latitude Southern Australia during the Early Cretaceous

, &
Pages 1045-1095 | Received 03 Dec 2018, Accepted 10 Feb 2019, Published online: 29 Apr 2019

References

  • Alexander, E. M., & Cotton, T. B. (2006). Chapter 1: Introduction. In T. B. Cotton, M. F. Scardigno & J. E. Hibburt (Eds.) The petroleum geology of South Australia, Vol. 2: Eromanga Basin. 2nd edition. Adelaide SA, Australia: South Australia, Department of Primary Industries and Resources. Petroleum Geology of South Australia Series.
  • Alexander, E. M., Sansome, A., & Cotton, T. B. (2006). Chapter 5: Lithostratigraphy and environments of deposition. In T. B. Cotton, M. F. Scardigno & J. E. Hibburt (Eds.) The petroleum geology of South Australia, Vol. 2: Eromanga Basin. 2nd edition. Adelaide SA, Australia: South Australia, Department of Primary Industries and Resources. Petroleum Geology of South Australia Series.
  • Alley, N. F., & Lemon, N. M. (1988). Evidence of earliest Cretaceous (Neocomian) marine influence, northern Flinders Ranges. South Australia. Geological Survey Quarterly Geological Notes, 106, 2–7.
  • Alley, N. F., & Frakes, L. A. (2003). First known Cretaceous glaciation: Livingston Tillite Member of the Cadna-owie Formation, South Australia. Australian Journal of Earth Sciences, 50(2), 139–144. doi:10.1046/j.1440-0952.2003.00984.x
  • Alley, N. F., & White, M. R. (1996). Chapter 6. Dating and correlating Eromanga Basin sediments. In E. M. Alexander & J. E. Hibburt (Eds.) The Petroleum Geology of South Australia. Volume 2: Eromanga Basin (pp. 87–100). Adelaide SA, Australia: South Australia Department of Mines and Energy. Report Book 96/20.
  • Alley, N. F., Frakes, L. A., Sheard, M. J., & Gray, D. (2011). Unravelling Early Cretaceous glacial events in the southern Eromanga Basin: Evidence from the Cadna-owie Formation and Bulldog Shale. In C. J. Forbes (Ed.), 6th Sprigg Symposium: Unravelling the northern Flinders ranges and beyond. Geological Society of Australia Abstracts 100, 1–4. Sydney NSW: Geological Society of Australia.
  • Alley, N. F., White, M. R., Price, P. L., & Wood, G. R. (2006). Chapter 6: Dating and correlating Eromanga Basin sediments. In T. B. Cotton, M. F. Scardigno & J. E. Hibburt (Eds.) The petroleum geology of South Australia, Vol. 2: Eromanga Basin. 2nd edition. Adelaide SA, Australia: South Australia, Department of Primary Industries and Resources. Petroleum Geology of South Australia Series.
  • Arbreu, V. S., & Anderson, J. B. (1998). Glacial eustasy during the Cenozoic: Sequence stratigraphic implications. American Association of Petroleum Geologists Bulletin, 82 (7), 1385–1400. doi:10.1306/1d9bca89-172d-11d7-8645000102c1865d
  • Arbreu, V. S., Hardenbol, J., Haddad, G. A., Baum, G. R., Droxler, A. W., & Vail, P. R. (1998). Oxygen Isotope Synthesis: A Cretaceous Ice-House? Tulsa, OK: SEPM Special Publication, No. 60.
  • Baillie, P. W., Powell, C. M., Li, Z. X., & Ryan, A. M. (1994). The tectonic framework of Western Australia’s Neoproterozoic to Recent sedimentary basins. In P. G. Purcell & R. R. Purcell (Eds.), Sedimentary basins of Western Australia, Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, 1994 (pp. 45–62). Perth, WA: PESA.
  • Barral, A., Gomez, B., Legendre, S., & Lécuyer, C. (2017). Evolution of the carbon isotope composition of atmospheric CO2 throughout the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 40–47. doi:10.1016/j.palaeo.2017.01.034
  • Benn, D. I., & Evans, D. J. A. (2010). Glaciers and Glaciation (2nd Ed.). Oxon, UK: Hodder Education.
  • Bottini, C., & Erba, E. (2018). Mid-Cretaceous paleoenvironmental changes in the western Tethys. Climate of the past Discussions, 34, 1–23. doi:10.5194/cp-14-1147-2018
  • Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H. C., Schouten, S., & Sinninghe Damste, J. S. (2015). Climate variability and ocean fertility during the Aptian Stage. Climate of the Past, 11(3), 383–402. doi:10.5194/cp-11-383-2015
  • Broecker, W. S., & Denton, G. H. (1990). What drives glacial cycles?. Scientific American, 262(1), 48–56. doi:10.1038/scientificamerican0190-48
  • Broster, B. E., & Hicock, S. R. (1985). Multiple flow and support mechanisms and the development of inverse grading in a subaquatic glacigenic debris flow. Sedimentology, 32(5), 645–657. doi:10.1111/j.1365-3091.1985.tb00479.x
  • Broadbridge, L. A. (1994). Palynological processing techniques employed in the Department of Mines and Energy, South Australia. South Australia: Department of Mines and Energy, Report Book, 93/28.
  • Brown, H. Y. L. (1894). Report of the Government Geologist on the country in the neighbourhood of Lake Eyre. South Australia Parliamentary Papers, 141.
  • Buggisch, W., Wang, X., Alekseev, A. S., & Joachimski, M. M. (2011). Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeography, Palaeoclimatology, Palaeoecology, 301(1–4), 18–38. doi:10.1016/j.palaeo.2010.12.015
  • Callen, R. A. (1972). Frome embayment stratigraphic drilling project: Preliminary report on South Australian Department of Mines Wooltana No. 1, Yalkalpo No. 1 and Wertaloona No. 1 stratigraphic bores (Report Book No. 72/160, GS No. 4926, DM No. 384/72). Adelaide SA: Department of Mines South Australia.
  • Cohen, K. M., Finney, K. M., Gibbard, P. L., & Fan, J.-X. (2017). The International Commission on Stratigraphy, International Chronostratigraphic Chart. Episodes, 36, 199–204.
  • David, T. W. E. (1906). Conditions of climate at various geological epochs. Paper presented at C.R. International Geological Congress, Mexico City, Mexico, 463–464.
  • David, T. W. E., & Howchin, W. (1923). Glaciation in central Australia. Australian Association for the Advancement of Science, 16, 74.
  • Ditchfield, P. W. (1997). High northern palaeolatitude Jurassic–Cretaceous palaeotemperature variation: New data from King Karls Land, Svalbard. Palaeogeography, Palaeoclimatology, Palaeocology, 130(1–4), 163–175. doi:10.1016/S0031-0182(96)00054-5
  • Ditchfield, P. W., Marshall, J. D., & Pirrie, D. (1994). High latitude palaeotemperature variation: New data from the Tithonian to Eocene of James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeocology, 107(1–2), 79–101. doi:10.1016/0031-0182(94)90166-X
  • Donnadieu, Y., Dromart, G., Goddéris, Y., Pucéat, E., Brigaud, B., Dera, G., … Olivier, N. (2011). A mechanism for brief glacial episodes in the Mesozoic greenhouse. Paleoceanography, 26, 1–10. doi:10.1029/2010PA002100
  • Dumitrescu, M., Brassell, S. C., Schouten, S., Hopmans, E. C., & Sinninghe Damsté, J. S. (2006). Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology, 34(10), 833–866. doi:10.1130/G22882.1
  • Elburg, M. A., Bons, P. D., Foden, J., & Brugger, J. (2003). A newly defined Late Ordovician magmatic-thermal event in the Mt Painter Province, northern Flinders Ranges, South Australia. Australian Journal of Earth Sciences, 50(4), 611–631. doi:10.1046/j.1440-0952.2003.01016.x
  • Erba, E., Bartolini, A., & Larson, R. L. (2004). Valanginian Weissert oceanic anoxic event. Geology, 32(2), 149–152. doi:10.1130/G20008.1
  • Etheridge, L. T., McMinn, A., Smyth, M., Walsh, I. L., & Davies, B. (1986). Eromanga Basin petroleum drillhole (DM Lake Stewart DDH1). Quarterly Geological Notes of the Geological Survey of New South Wales, 62, 16–30.
  • Evenson, E. B., Dreimanis, A., & Newsome, J. W. (1977). Subaquatic flow tills: a new interpretation for the genesis of some laminated till deposits. Boreas, 6(2), 115–133. doi:10.1111/j.1502-3885.1977.tb00341.x
  • Eyles, N., & Eyles, C. H. (1992). Glacial depositional systems. In R. G. Walker & N. P. James (Eds.), Facies Models. Response to sea level change (pp. 73–100). St Johns, NL: Geological Association of Canada.
  • Fernández Mendiola, P. A., Mendioca, J., Owen, H. G., Hernández, S., Millan, M. I., & Garcia-Mondejar, J. (2013). Black shales of the early and late Aptian (Bilbao, Spain): C-isotopes and TOC. Geotemas, 13, 80–83.
  • Frakes, L. A., & Francis, J. E. (1988). A guide to the Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, 333(6173), 547–549. doi:10.1038/333547a0
  • Frakes, L. A., & Francis, J. E. (1990). Cretaceous palaeoclimates. In R. N. Ginsburg & B. Beaudoin (Eds.), Cretaceous Resources, Events and Rhythyms (pp. 373–387). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Frakes, L. A., & Krassay, A. A. (1992). Discovery of probable ice-rafting in the Late Mesozoic of the Northern Territory and Queensland. Australian Journal of Earth Sciences, 39(1), 115–119. doi:10.1080/08120099208728006
  • Frakes, L. A., Alley, N. F., & Deynoux, M. (1995). Early Cretaceous ice rafting and climatic zonation in Australia. International Geology Review, 37(7), 567–583. doi:10.1080/00206819509465419
  • Frank, T. D., Birgenheier, L. P., Montañez, I. P., Fielding, C. R., & Rygel, M. C. (2008). Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records. In C. R Fielding, T. D. Frank & J. L. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space (pp. 331–342). Boulder, CO: Geological Society of America Special Paper, 441.
  • Fujita, K. (2008). Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1–2), 14–19. doi:10.1016/j.epsl.2008.08.028
  • Galloway, J. M., Tullius, D. N., Evenchick, C. A., Swindles, G. T., Hadlari, T., & Embry, A. (2015). Early Cretaceous vegetation and climate change at high latitude: Palynological evidence from Isachsen Formation, Arctic Canada. Cretaceous Research, 56, 399–420. doi:10.1016/j.cretres.2015.04.002
  • Gorter, J. D. (1994). Sequence stratigraphy and the depositional history of the Murta Member (upper Hooray Sandstone), southeastern Eromanga Basin, Australia: implications for the development of source and reservoir facies. APEA Journal, 34 (1), 644–673. doi:10.1071/AJ93049
  • Grasby, S. E., McCune, G. E., Beauchamp, B., & Galloway, J. M. (2017). Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. Geological Society of America Bulletin, 129 (7–8), 771–787. doi:10.1130/B31600.1
  • Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., van Veen, P., Thierry, T., & Huang, Z. (1994). A Mesozoic time scale. Journal of Geophysical Research, 99(12), 51–74. doi:10.1029/94JB01889
  • Gradstein, F. M., Ogg, J. G., & Smith, A. G. (Eds.) (2005). A geologic time scale 2004. Cambridge UK: Cambridge University Press. doi:10.1017/CBO9780511536045
  • Greenfield, J. E., Gilmore, P. J., & Mills, K. J. (compilers) (2010). Explanatory notes for the Koonenberry Belt geological maps. Geological Survey of New South Wales, Bulletin, 35, 498p.
  • Gröcke, D. R., Price, G. D., Robinson, S. A., Baraboshkin, E. Y., Mutterlose, J., & Ruffell, A. (2005). The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters, 240, 495–509. doi:10.1016/j.epsl.2005.09.001
  • Hay, W. H. (2008). Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29(5–6), 725–753. doi:10.1016/j.cretres.2008.05.025
  • Helby, R., Morgan, R., & Partridge, A. D. (1987). A palynological zonation of the Australian Mesozoic. Sydney NSW: Memoir of the Association of Australasian Palaeontologists, 4, 94p.
  • Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M., & Fath, J. (2015). Mid-Cretaceous High Arctic stratigraphy, climate, and oceanic anoxic events. Geology, 43(5), 403–406. doi:10.1130/G36439.1
  • Hicock, S. R., Dreimanis, A., & Broster, B. E. (1981). Submarine flow tills at Victoria, British Columbia. Canadian Journal of Earth Sciences, 18(1), 71–80. doi:10.1139/e81-006
  • Hill, S. M., & Hore, S. B. (2011). Key insights into range-front mineral system expression and evolution from regolith and long-term landscape history, NE Flinders Ranges. MESA Journal, 63, 20–31.
  • Hochuli, P. A., Menegatti, A. P., Weissert, H., Riva, A., Erba, E., & Premoli Silva, I. (1999). Episodes of high productivity and cooling in the early Aptian Alpine Tethys. Geology, 27(7), 657–660. doi:10.1130/0091-7613(1999)027<0657:EOHPAC
  • Hore, S. B., & Hill, S. M. (2009). Palaeoredox fronts: setting and associated alteration exposed within a key section for understanding uranium mineralisation at the Four Mile West deposit. MESA Journal, 55, 34–39.
  • Hore, S. B., Hill, S. M., & Alley, N. F. (2020). Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier area, northern Flinders Ranges. Australian Journal of Earth Sciences 67(8), 1117–1160. https://doi.org/10.1080/08120099.2020.1730963
  • Howchin, W. (1928). The building of Australia and the succession of life, Part 2 (pp. 287–291). London, UK: British Science Guild.
  • Hu, X., Jansa, L., & Sarti, M. (2005). Mid-Cretaceous oceanic red beds in the Umbria-Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3–4), 163–186. doi:10.1016/j.palaeo.2005.10.003
  • Huang, C. M., Retallack, G. J., & Wang, C. S. (2012). Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China. Cretaceous Research, 33(1), 42–49. doi:10.1016/j.cretres.2011.08.001
  • Huber, B. T., Hoddell, D. A., & Hamilton, C. P. (1995). Mid- to late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin, 107(10), 1164–1191. > 2.3.co;2 doi:10.1130/0016-7606(1995)107<1164:mlccot
  • Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., … Dineen, A. A. (2012). Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22(1), 1–19. doi:10.1016/j.gr.2011.11.005
  • Jack, R. L. (1915). Country south of the Musgrave Ranges. Geological Survey of South Australia Bulletin, 5, 37–53.
  • Jahren, A. H., Arens, N. C., Sarmiento, G., Guerrero, J., & Amundson, R. (2001). Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29(2), 159–162. doi:10.1130/0091-7613(2001)029<0159:TROMHD
  • Jansen, J. H. F., Woensdregt, C. R., Kooistra, M. J., & van der Gaast, S. J. (1987). Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite. Geology, 15(3), 245–248. > 2.0.CO;2 doi:10.1130/0091-7613(1987)15 < 245:IPITZD
  • Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., & Sinninghe Damsté, J. S. (2012). Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8(1), 215–226. doi:10.5194/cp-8-215-2012
  • Jones, C. E., & Jenkyns, H. C. (2001). Seawater strontium isotopes, oceanic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301(2), 112–149. doi:10.2475/ajs.301.2.112
  • de Jong, M. G. G., & Rappol, M. (1983). Ice-marginal debris-flow deposits in western Allgäu, southern Germany. Boreas, 12(1), 57–70. doi:10.1111/j.1502-3885.1983.tb00360
  • Keller, C. E., Hochuli, P. A., Weissert, H., Bernasconi, S. M., Giorgioni, M., & Garcia, T. I. (2011). A volcanically induced warming and floral change preceded the onset of the OEA1a (Early Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 305(1–4), 43–49. doi:10.1016/j.palaeo.2011.02.011
  • Kemper, E. (1983). Über Kalt- und Warmzeiten der Unterkreide. Zitteliana, 10, 359–369.
  • Kemper, E. (1987). Das Klima der Kreide-Zeit. Geologische Jahrbuch, 96, 399.
  • Kemper, E., & Schmitz, H. H. (1975). Stellate nodules from the Upper Deer Bay Formation (Valanginian) of Arctic Canada. Geological Survey of Canada Paper, 75-1C, 109–119. doi:10.4095/103040
  • Kemper, E., & Schmitz, H. H. (1981). Glendonite-Indikatoren des polarmarinen Ablagerungmilieus. Geologische Rundschau, 70(2), 759–773. doi:10.1007/BF01822149
  • Kessels, K., Mutterlose, J., & Michalzik, D. (2006). Early Cretaceous (Valanginian–Hauterivian) calcareous nannofossils and isotopes of the northern Hemisphere: Proxies for the understanding of Cretaceous palaeoclimate. Lethaia, 39(2), 157–172. doi:10.1080/00241160600763925
  • Krieg, G. W., Alexander, E. M., & Rogers, P. A. (1995). Jurassic–Cretaceous Epicratonic Basins. Eromanga Basin. In J. F. Drexel, & W. V. Preiss (Eds.). The geology of South Australia. Volume 2. The Phanerozoic. South Australia (pp. 101–124). Adelaide SA: Department of Mines and Energy, Bulletin, 54.
  • Kuhnt, W., Holbourn, A., & Moullade, M. (2011). Transient global cooling at the onset of the early Aptian oceanic anoxic event (OAE) 1a. Geology, 39(4), 323–326. doi:10.1130/G31554.1
  • Ladant, J.-B., & Donnadieu, Y. (2016). Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse. Nature Communications, 7(12771), 1–9. doi:10.1038/ncomms12771
  • Larson, G. J., Menzies, J., Lawson, D. E., Evenson, E. B., & Hopkins, N. R. (2016). Macro- and micro-sedimentology of a modern melt-out till – Matanuska Glacier, Alaska, U.S.A. Boreas, 45 (2), 235–251. doi:10.1111/bor.12149
  • Larson, R. L., & Erba, E. (1999). Onset of mid-Cretaceous greenhouse in the Barremian–Aptian: Igneous events and the biological, sedimentary and geochemical response. Paleoceanography, 14(6), 663–678. doi:10.1029/1999PA900040
  • Lemon, N. M. (1988). Tidal influences in the marginal Eromanga Basin. Quarterly Geological Notes, 105, 7–11. Adelaide SA: Geological Survey of South Australia.
  • Lorenzen, J., Kuhnt, W., Holbourn, A., Flögel, S., Moullade, M., & Tronchetti, G. A. (2013). A new sediment core from the Bedoulian (Lower Aptian) stratotype at Roquefort-La Bédoule, SE France. Cretaceous Research, 39, 6–16. doi:10.1016/j.cretres.2012.03.019
  • de Lurio, J. L., & Frakes, L. A. (1999). Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochimica et Cosmochimica Acta, 63 (7–8), 1039–1048. doi:10.1016/S0016-7037(99)00019-8
  • Mahaney, W. C. (2002). Atlas of sand grain surface textures and applications (p. 237). Oxford, UK: Oxford University Press.
  • Mahaney, W. C., Claridge, G., & Campbell, I. (1996). Microtextures on quartz grains in tills from Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 121(1–2), 89–103. doi:10.1016/0031-0182(95)00069-0
  • Malinverno, A., Hildebrandt, J., Tominaga, M., & Channell, J. E. T. (2012). M-sequence geomagnetic polarity time scale (MHTC 12) that steadies global spreading rates and incorporates astrochronology constraints. Journal of Geophysical Research, 117, B06104. doi:10.1029/2012JB009260
  • Martinez, M., Deconinck, J.-F., Pellenard, P., Reboulet, S., & Riquier, L. (2013). Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 91–102. doi:10.1016/j.palaeo.2013.02.021
  • Matthews, R. K., & Poore, R. Z. (1980). Tertiary δ18O record and glacio-eustatic sea-level fluctuations. Geology, 8(10), 501–504. doi:10.1130/0091-7613(1980)8<501:TORAGS
  • Maurer, F., Buchem, F. S. P., Eberli, G. P., Pierson, B. J., Raven, M. J., Larsen, P.-H., … Vincent, B. (2009). Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova, 25, 87–94. doi:10.1111/ter.12009
  • McAnena, A., Flogel, S., Hofmann, P., Herrle, J. O., Griesand, A., Pross, J., … Wagner, T. (2013). Atlantic cooling associated with marine biotic crisis during the mid-Cretaceous period. Nature Geoscience, 6(7), 558–651. doi:10.1038/ngeo1850
  • McArthur, J. M., Mutterlose, J., Price, G. D., Rawson, P. F., Ruffell, A., & Thirlwall, M. F. (2004). Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ18O, Na, Sr, Mg), and palaeo-oceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 253–272. doi:10.1016/S0031-0182(03)00638-2
  • McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirlwall, M. V., & Van de Schootbrugge, B. (2007). Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeography, Palaeoclimatology, Palaeoecology, 248(3–4), 391–430. doi:10.1016/j.palaeo.2006.12.015
  • Méhay, S., Keller, C. E., Bernasconi, S. M., Weissert, H., Erba, E., Bottini, C., & Hochuli, P. A. (2009). A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a calcification crisis. Geology, 37, 819–822. doi:10.1130/G30100A.1
  • Melinte, C. M., & Mutterlose, J. (2001). A Valanginian (Early Cretaceous) ‘boreal nannoplankton excursion’ in sections from Romania. Marine Micropalaeontology, 43(1–2), 1–25. doi:10.1016/S0377-8398(01)00022-6
  • Miller, G. H., Bradley, R. S., & Andrews, J. T. (1975). The glaciations level and lowest equilibrium line altitude in the high Canadian Arctic: maps and climatic interpretation. Arctic and Alpine Research, 7(2), 155–168. doi:10.2307/1550318
  • Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., … Rygel, M. C. (2007). CO2-forced climate and vegetative instability during late Paleozoic deglaciation. Science, 315, 87–91. doi:10.1126/science.1134207
  • Morales, C., Rogov, M., Wierzbowski, H., Ershova, V., Suan, G., Adatte, T., … van de Scootbrugge, B. (2017). Glendonites track methane seepage in Mesozoic polar seas. Geology, 45(6), 503–506. doi:10.1130/G38967.1
  • Morgan, R. (1980). Palynostratigraphy of the Australian Early and Middle Cretaceous. Sydney NSW, Australia: New South Wales Geological Survey, Memoir 18.
  • Morton, J. G. G. (1982). The Mesozoic–Cainozoic stratigraphy and faunas of the Tipooburra–Milparinka area (unpublished MSc Thesis). Kensington NSW, Australia: University of New South Wales.
  • Mutterlose, J., & Kessels, K. (2000). Early Cretaceous calcareous nannofossils from high latitudes: Implications for palaeobiogeography and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 60, 347–372. doi:10.1016/S0031-0182(00)00082-1
  • Newton, C. B. (1986). The Tintaburra oilfield. APEA Journal, 26 (1), 334–352. doi:10.1071/AJ85029
  • O’Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damste, J. S., Schouten, S., Lunt, D. J., … Wrobel, N. E. (2017). Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 172, 224–247. doi:10.1016/j.earscirev.2017.07.012
  • Papp, C. P., Cociuba, I., & Lazăr, D. F. (2013). Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of Pădurea Craiului (Apuseni Mountains, Romania): A chemostratigraphic correlation and palaeoenvironmental tool. Applied Geochemistry, 32, 3–16. doi:10.1016/j.apgeochem.2012.09.005
  • Parkin, L. W. (1956). Notes on the younger glacial remnants of northern South Australia. Royal Society of South Australia Transactions, 79, 149–151.
  • Payne, J., Barovich, K., & Hand, M. (2006). Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions. Precambrian Research, 148(3–4), 275–291. doi:10.1016/j.precamres.2006.05.002
  • Petromin, N. L. (1971a). SML 456. Camp Hill. Progress reports for the period 6/8/70 to 5/8/71. Adelaide SA: Primary Industries and Resources SA. Open File Envelope, No. 1568.
  • Petromin, N. L. (1971b). SML 610. Camp Hill. Progress reports to licence expiry for the period 6/8/71 to 5/8/72. Adelaide SA: Primary Industries and Resources SA. Open File Envelope, No. 1734.
  • Pielou, E. C. (1991). After the ice age: The return of life to glaciated North America. Chicago IL: University of Chicago Press.
  • Podlaha, O. G., Mutterlose, J., & Veizer, J. (1998). Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of Science, 298(4), 324–347. doi:10.2475/ajs.298.4.324
  • Preiss, W. V. (Compiler) (1987). The Adelaide Geosyncline–late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Adelaide SA, Australia: Geological Survey of South Australia, Bulletin 53.
  • Price, G. D. (1999). The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews, 48(3), 183–210. doi:10.1016/S0012-8252(99)00048-3
  • Price, G. D., & Mutterlose, J. (2004). Isotopic signals from Late Jurassic–Early Cretaceous (Volgian–Valanginian) sub-Arctic belemnites, Yatria River, western Siberia. Journal of the Geological Society of London, 161(6), 959–968. doi:10.1144/0016-764903-169
  • Price, G. D., & Nunn, E. V. (2010). Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: Transient glacial temperatures during the Cretaceous greenhouse. Geology, 38(3), 251–254. doi:10.1130/G30593.1
  • Price, G. D., & Passey, B. H. (2013). Dynamic polar climates in a greenhouse world: Evidence from clumped isotope thermometry of Early Cretaceous belemnites. Geology, 41(8), 923–926. doi:10.1130/G34484.1
  • Price, G. D., Sellwood, B. W., & Pirrie, D. (1996). Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients: discussion. Geological Society of America Bulletin, 108(9), 1192–1193. doi:10.1130/0016-7606(1996)108<1192:MLCCOT
  • Price, P. L. (1997). Permian to Jurassic palynostratigraphic nomenclature of the Bowen and Surat Basins. In P. M. Green (Ed.), The Surat and Bowen Basins, south-east Queensland. Queensland Minerals and Energy Review Series (pp. 137–178). Brisbane QLD, Australia: Queensland Department of Mines and Energy.
  • Price, P. L., Filatoff, J., Williams, A. J., Pickering, S. A., & Wood, G. R. (1985). Late Palaeozoic and Mesozoic palynostratigraphical units. CSR Oil and Gas Division, Palynology Facility Report. South Australia. Department of Primary Industries and Resources. Open File Envelope, 6846, 41–90. unpublished).
  • Pucéat, E., Lécuyer, C., Sheppard, S. M. F., Dromart, G., Reboulet, S., & Grandjean, P. (2003). Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography, 18, 1–12. doi:10.1029/2002PA000823
  • Purgstaller, B., Dietzel, M., Baldermann, A., & Mavromatis, V. (2017). Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans-) formation of ikaite. Geochimica et Cosmochimica Acta, 217, 128–143. doi:10.1016/j.gca.2017.08.016
  • Reid, A., Payne, J., & Wade, B. (2006). A new geochronological capability for South Australia: U–Pb zircon dating via LA-ICPMS. MESA Journal, 42, 27–37.
  • Rodríguez-López, J. P., Liesa, C. L., Pardo, G., Meléndez, N., Soria, A. R., & Skilling, I. (2016). Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 452, 11–27. doi:10.1016/j.palaeo.2016.04.004
  • Rogers, P. A., & Freeman, P. J. (1996). Warrina South Australia.Sheet SH53-3 International Index. 1:250 000 Geological series-explanatory notes (p. 44). Mines and Energy South Australia.
  • Rogov, M. A., Ershova, V. B., Shchepetova, E. V., Zakharov, V. A., Pokrovsky, B. G., & Khudoley, A. K. (2017). Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia, revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes. Cretaceous Research, 71, 102–112. doi:10.1016/j.cretres.2016.11.011
  • Royer, D. L. (2006). CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23), 5665–5675. doi:10.1016/j.gca.2005.11.031
  • Sames, B., Wagreich, M., Wendler, J. E., Haq, B. U., Conrad, C. P., Melinte-Dobreniscu, M. C., … Zorina, S. O. (2016). Review: Short-term sea-level changes in a greenhouse world – A review from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 393–341. doi:10.1016/j.palaeo.2015.10.045
  • Sellwood, B. W., Price, G. D., & Valdes, P. J. (1994). Cooler estimates of Cretaceous temperatures. Nature, 370(6489), 453–455. doi:10.1038/370453a0
  • Senior, B. R., Exon, N. F., & Burger, D. (1975). The Cadna-owie and Toolebuc formations in the Eromanga Basin, Queensland. Queensland Government Mining Journal, 76, 445–455.
  • Sheard, M. J. (1991). Glendonites from the southern Eromanga Basin in South Australia: palaeoclimatic indicators for Cretaceous ice. Quarterly Geological Notes, 114, 17–23. Adelaide SA: Geological Survey of South Australia.
  • Sheard, M. J. (2009). Explanatory Notes for CALLABONNA 1:250 000 Geological Map, sheet SH 54-6 (Report Book, 2009/01). Adelaide SA: South Australia Department of Primary Industries and Resources.
  • Sheard, M. J., & Flint, R. B. (1992). Cretaceous wave-polished granite surfaces, northern Mount Babbage Inlier, South Australia. Quarterly Geological Notes, 122, 19–23. Adelaide SA: Geological Survey of South Australia.
  • Sláma, J., & Košler, J. (2012). Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry, Geophysics, Geosystems, 13, 5–17. doi:10.1029/2012GC004106
  • Stoll, H. M., & Schrag, D. P. (1996). Evidence for glacial control of rapid sea level changes in the early Cretaceous. Science, 272(5269), 1771–1774. doi:10.1126/science.272.5269.1771
  • Teale, G. S. (1979). Revision of nomenclature for Palaeozoic intrusives of the Mount Painter Province, South Australia. Royal Society of South Australia Transactions, 103, 95–100.
  • Tejada, M. L. G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J. J., Ohkouchi, N., … Tatsumi, Y. (2009). Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology, 37(9), 855–858. doi:10.1130/G25763A.1
  • Veevers, J. J., Powell, C. M., & Roots, S. R. (1991). Review of seafloor spreading around Australia. 1, Synthesis of the patterns of spreading. Australian Journal of Earth Sciences, 38(4), 373–389. doi:10.1080/08120099108727979
  • Vickers, M. L., Price, G. D., Jerrett, R. M., & Watkinson, M. (2016). Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard. Geosphere, 12(5), 1594–1605. doi:10.1130/GES01344.1
  • Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., & Lin, Z. (2014). Palaeo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews, 129, 136–147. doi:10.1016/j.earscirev.2013.11.001
  • Weissert, H., & Erba, E. (2004). Volcanism, CO2 and palaeoclimate: A Late Jurassic–Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society of London, 161, 695–702. doi:10.1144/0016-764903-087
  • Wilkinson, I., & Riding, J. (2007). The Cretaceous greenhouse world. British Geological Survey, Earthwise, 24, 32–33.
  • Woodard, G. D. (1955). The stratigraphic succession in the vicinity of Mt Babbage station, South Australia. Transactions of the Royal Society of South Australia, 78, 8–17.
  • Woolnough, W. G. (1926). Preliminary notes on the occurrence of large erratic blocks probably of glacial origin, on the eastern escarpment of the Flinders Ranges, South Australia. Journal of the Australasian Advancement of Science, 17, 81–84.
  • Woolnough, W. G., & David, T. W. E. (1926). Cretaceous glaciation in central Australia. Quarterly Journal Geological Society of London, 82(1–4), 332. doi:10.1144/GSL.JGS.1926.082.01-04.20
  • Wopfner, H., Freytag, I. B., & Heath, G. R. (1968). Stratigraphy and facies of basal sediments, western Great Artesian Basin, South Australia (Report Book, 66/103). South Australia. Department of Mines.
  • Wopfner, H., Freytag, I. B., & Heath, G. R. (1970). Basal Jurassic–Cretaceous rocks of the western Great Artesian Basin, South Australia: stratigraphy and environment. AAPG Bulletin, 54, 383–416.