Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 67, 2020 - Issue 1
510
Views
3
CrossRef citations to date
0
Altmetric
Articles

Porphyry Cu fertility of the Loch Lilly-Kars Belt, Western New South Wales, Australia

, ORCID Icon, ORCID Icon, &
Pages 75-87 | Received 27 Feb 2018, Accepted 06 Jun 2019, Published online: 25 Jul 2019

References

  • Ballard, J. R., Palin, M. J., & Campbell, I. H. (2002). Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3), 347–364. doi:10.1007/s00410-002-0402-5
  • Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., … Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1–2), 115–140. doi:10.1016/j.chemgeo.2004.01.003
  • Cairns, C., Menzies, D., Corbett, G., Forgon, H., & Murphy, J. (2015). The Thursday’s Gossan – it can’t run but it can hide. Mineral Exploration in the Tasmanides. Mines and Windes, Orange.
  • Cayley, R. A. (2011). Exotic crustal block accretion to the eastern Gondwanaland margin in the Late Cambrian–Tasmania, the Selwyn Block, and implications for the Cambrian–Silurian evolution of the Ross, Delamerian, and Lachlan orogens. Gondwana Research, 19(3), 628–649. doi:10.1016/j.gr.2010.11.013
  • Chiaradia, M., Merino, D., & Spikings, R. (2009). Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru). Earth and Planetary Science Letters, 288(3-4), 505–515. doi:10.1016/j.epsl.2009.10.012
  • Chiaradia, M., Ulianov, A., Kouzmanov, K., & Beate, B. (2012). Why large porphyry Cu deposits like high Sr/Y magmas? Scientific Reports, 2(1), 685. doi:10.1038/srep00685
  • Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500. doi:10.2113/0530469
  • Crawford, A. J., & Berry, R. F. (1992). Tectonic implications of Late Proterozoic–Early Palaeozoic igneous rock associations in western Tasmania. Tectonophysics, 214(1–4), 37–56. doi:10.1016/0040-1951(92)90189-D
  • Crawford, A. J., Meffre, S., & Symonds, P. A. (2003a). 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System. In R. R. Hillis & R. D. Müller (Eds.), Evolution and dynamics of the Australian plate (pp. 383–404). Sydney, NSW: Geological Society of Australia Special Publication, Australia, and Boulder Co: Geological Society of America Special Paper 372.
  • Crawford, A. J., Cayley, R. A., Taylor, D. H., Morand, V. J., Gray, C. M., Kemp, A. I. S., … Black, L. P. (2003b). Neoproterozoic and Cambrian. In W. D. Birch (Ed.), Geology of Victoria (pp. 73–92). Melbourne, VIC: Geological Society of Australia (Victoria Division), Special Publication, 23.
  • Crawford, A. J., Stevens, B., & Fanning, M. (1997). Geochemistry and tectonic setting of some Neoproterozoic and early Cambrian volcanics in western New South Wales. Australian Journal of Earth Sciences, 44(6), 831–852. doi:10.1080/08120099708728358
  • Davidson, J., Turner, S., Handley, H., MacPherson, C., & Dosseto, A. (2007). Amphibole “sponge” in arc crust? Geology, 35(9), 787–790. doi:10.1130/G23637A.1
  • Dilles, J. H., Kent, A. J., Wooden, J. L., Tosdal, R. M., Koleszar, A., Lee, R. G., & Farmer, L. P. (2015). Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110(1), 241–251. doi:10.2113/econgeo.110.1.241
  • Direen, N. G., & Crawford, A. J. (2003). The Tasman Line: Where is it, what is it, and is it Australia's Rodinian breakup boundary? Australian Journal of Earth Sciences, 50(4), 491–502. doi:10.1046/j.1440-0952.2003.01005.x
  • Fergusson, C. L., Nutman, A. P., Kamiichi, T., & Hidaka, H. (2013). Evolution of a Cambrian active continental margin: The Delamerian–Lachlan connection in southeastern Australia from a zircon perspective. Gondwana Research, 24(3–4), 1051–1066. doi:10.1016/j.gr.2013.03.006
  • Gerdes, A., & Zeh, A. (2009). Zircon formation versus zircon alteration — new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology, 261(3–4), 230–243. doi:10.1016/j.chemgeo.2008.03.005
  • Gibson, G. M., Champion, D. C., & Ireland, T. R. (2015). Preservation of a fragmented late Neoproterozoic–earliest Cambrian hyper-extended continental-margin sequence in the Australian Delamerian Orogen. In G. M. Gibson, F. Roure, & G. Manatschal (Eds.), Sedimentary basins and crustal processes at Continental Margins: From modern hyper-extended margins to deformed ancient analogues (pp. 269–299). London, UK: Geological Society of London, Special Publications, 413.
  • Glen, R. A. (2005). The Tasmanides of eastern Australia. In A. P. M. Vaughan, P. T. Leat, & R. J. Pankhurst (Eds.), Terrane processes at the margins of Gondwana (pp. 23–96). London, UK: Geological Society of London Special Publications, 246.
  • Glen, R. A., Scheibner, E., & Vandenberg, A. H. M. (1992). Paleozoic intraplate escape tectonics in Gondwanaland and major strike-slip duplication in the Lachlan Orogen of southeastern Australia. Geology, 20(9), 795–799. doi:10.1130/0091-7613(1992)020<0795:PIETIG > 2.3.CO;2
  • Greenfield, J. E., Musgrave, R. J., Bruce, M. C., Gilmore, P. J., & Mills, K. J. (2011). The Mount Wright Arc: A Cambrian subduction system developed on the continental margin of East Gondwana, Koonenberry Belt, eastern Australia. Gondwana Research, 19(3), 650–669. doi:10.1016/j.gr.2010.11.017
  • Hawkesworth, C. J., & Kemp, A. I. S. (2006). Evolution of the continental crust. Nature, 443(7113), 811–817. doi:10.1038/nature05191
  • Hedenquist, J. W., Arribas, A., & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology, 93(4), 373–404. doi:10.2113/gsecongeo.93.4.373
  • Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. doi:10.1016/j.chemgeo.2004.06.017
  • Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., & Kinny, P. D. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076), 580–583. doi:10.1038/nature04505
  • Leitch, E. C., Webby, B. D., Mills, K. J., & Kolbe, P. (1987). Terranes of the Wonominta Block, far western New South Wales. In E. C. Leitch & E. Scheibner (Eds.), Terrane accretion and orogenic belts (pp. 31–37). Washington, DC: American Geophysical Union, Geodynamics Series, 19.
  • Li, X.-H., Long, W.-G., Li, Q.-L., Liu, Y., Zheng, Y.-F., Yang, Y.-H., … Tao, H. (2010). Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age. Geostandards and Geoanalytical Research, 34(2), 117–134. doi:10.1111/j.1751-908X.2010.00036.x
  • Loucks, R. R. (2014). Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1), 5–16. doi:10.1080/08120099.2013.865676
  • Loucks, R. R., Fiorentini, M. L., & Rohrlach, B. D. (2018). Divergent T–ƒO2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contributions to Mineralogy and Petrology, 173(12), 104–121. doi:10.1007/s00410-018-1529-3
  • Lu, Y.-J., Kerrich, R., Mccuaig, T. C., Li, Z.-X., Hart, C. J. R., Cawood, P. A., … Tang, S.-H. (2013). Geochemical, Sr–Nd–Pb, and zircon Hf–O isotopic compositions of Eocene–Oligocene shoshonitic and potassic adakite-like felsic intrusions in Western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Petrology, 54(7), 1309–1348. doi:10.1093/petrology/egt013
  • Lu, Y. J., Loucks, R. R., Fiorentini, M. L., McCuaig, T. C., Evans, N. J., Yang, Z. M., & Kobussen, A. (2016). Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. In J. P. Richards (Ed.), Tectonics and metallogeny of the tethyan orogenic belt (pp. 329–347). Littleton, CO: Boulder Co: Society of Economic Geologists Special Publication, 19.
  • Martin, L., Duchêne, S., Deloule, E., & Vanderhaeghe, O. (2006). The isotopic composition of zircon and garnet: A record of the metamorphic history of Naxos, Greece. Lithos, 87(3–4), 174–192. doi:10.1016/j.lithos.2005.06.016
  • Martin, L., Duchêne, S., Deloule, E., & Vanderhaeghe, O. (2008). Mobility of trace elements and oxygen in zircon during metamorphism: Consequences for geochemical tracing. Earth and Planetary Science Letters, 267(1–2), 161–174. doi:10.1016/j.epsl.2007.11.029
  • Mills, K. J. (1992). Geological evolution of the Wonominta Block. Tectonophysics, 214(1–4), 57–68. doi:10.1016/0040-1951(92)90190-H
  • Münker, C., & Crawford, A. J. (2000). Cambrian arc evolution along the SE Gondwana active margin: A synthesis from Tasmania‐New Zealand‐Australia‐Antarctica correlations. Tectonics, 19(3), 415–432. doi:10.1029/2000TC900002
  • Pettke, T., Audétat, A., Schaltegger, U., & Heinrich, C. A. (2005). Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry. Chemical Geology, 220(3–4), 191–191, 213. doi:10.1016/j.chemgeo.2005.02.018
  • Richards, J. P. (2003). Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Economic Geology, 98(8), 1515–1533. doi:10.2113/gsecongeo.98.8.1515
  • Richards, J. P. (2011). High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Economic Geology, 106(7), 1075–1081. doi:10.2113/econgeo.106.7.1075
  • Rohrlach, B. D., Loucks, R. R., & Porter, T. M. (2005). Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper–gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In T. M. Porter (Ed.), Super porphyry copper & gold deposits—a global perspective (pp. 369–407). Adelaide SA: PCG Publishing.
  • Schofield, A., Cayley, R. A., Barton, T., Taylor, D., Nicoll, M., & Cairns, C. (2015). Regional geology and mineral systems of the Stavely region, western Victoria: Data release 1 – Stratigraphic drilling field data. Geoscience Australia Record 2015/13, 28 p.
  • Sharp, T. R., Robson, D. R., Hallett, M. S., Mills, K. J., & Stevens, B. P. J. (2006). Loch Lilly-Kars Belt 1:250 000 Geophysical-Geological Interpretation Map (1st ed.). Maitland, NSW: Geological Survey of New South Wales.
  • Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Economic Geology, 68(6), 799–815. doi:10.2113/gsecongeo.68.6.799
  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41. doi:10.2113/gsecongeo.105.1.3
  • Valley, J. W. (2003). Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53(1), 343–385. doi:10.2113/0530343
  • Veevers, J. J., & Conaghan, P. J. (1984). Phanerozoic Earth History of Australia. Oxford, USA: Oxford University Press.
  • Vervoort, J. D., & Kemp, A. I. S. (2016). Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology, 425, 65–75. doi:10.1016/j.chemgeo.2016.01.023
  • Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., … Spiegel, W. (1995). Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1), 1–23. doi:10.1111/j.1751-908X.1995.tb00147.x
  • Zeh, A., Gerdes, A., Barton, J., & Klemd, R. (2010). U–Th–Pb and Lu–Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambrian Research, 179(1–4), 50–68. doi:10.1016/j.precamres.2010.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.