Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 68, 2021 - Issue 4
420
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Zebra rock and other Ediacaran paleosols from Western Australia

Pages 532-556 | Received 15 Jun 2020, Accepted 02 Sep 2020, Published online: 30 Sep 2020

References

  • Abrajevitch, A., Pillans, B. J., Roberts, A. P., & Kodama, K. (2018). Magnetic properties and paleomagnetism of Zebra Rock, Western Australia: Chemical remanence acquisition in hematite pigment and Ediacaran geomagnetic field behavior. Geochemistry, Geophysics, Geosystems, 19(3), 732–748. https://doi.org/10.1002/2017GC007091
  • Aiello, I. W., Garrison, R. E., Moore, E. C., Kastner, M., & Stakes, D. S. (2001). Anatomy and origin of carbonate structures in a Miocene cold-seep field. Geology, 29(12), 1111–1114. https://doi.org/10.1130/0091-7613(2001)0291111:AAOOCS2.0.CO;2
  • Almohandis, A. A. (2002). Mineralogy and chemistry of desert roses, Ayn Dar area, Abqaiq, eastern province, Saudi Arabia. Qatar University Science Journal, 22, 191–204. http://hdl.handle.net/10576/9660
  • Álvaro, J. J., Van Vliet-Lanoë, B., Vennin, E., & Blanc-Valleron, M. M. (2003). Lower Cambrian paleosols from the Cantabrian Mountains (northern Spain): A comparison with Neogene–Quaternary estuarine analogues. Sedimentary Geology, 163(1–2), 67–84. https://doi.org/10.1016/S0037-0738(03)00159-3
  • Antcliffe, J. B., Gooday, A. J., & Brasier, M. D. (2011). Testing the protozoan hypothesis for Ediacaran fossils: A developmental analysis of Palaeopascichnus. Palaeontology, 54(5), 1157–1175. https://doi.org/10.1111/j.1475-4983.2011.01058.x
  • Bao, H., Chen, Z. Q., & Zhou, C. (2012). An 17O record of late Neoproterozoic glaciation in the Kimberley region, Western Australia. Precambrian Research, 216-219(1), 152–161. https://doi.org/10.1016/j.precamres.2012.06.019
  • Barbour, M. M., & Farquhar, G. D. (2000). Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment, 23(5), 473–485. https://doi.org/10.1046/j.1365-3040.2000.00575.x
  • Barbour, M. M., Walcroft, A. S., & Farquhar, G. D. (2002). Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment, 25(11), 1483–1499. https://doi.org/10.1046/j.0016-8025.2002.00931.x
  • Bavinton, O. A., & Taylor, S. R. (1980). Rare earth element geochemistry of Archean metasedimentary rocks from Kambalda, Western Australia. Geochimica et Cosmochimica Acta, 44(5), 639–648. https://doi.org/10.1016/0016-7037(80)90154-4
  • Belnap, J. (2003). Comparative structure of physical and biological soil crusts. In. J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function and management (pp. 177–191). Springer.
  • Benison, K. C., & Bowen, B. B. (2015). The evolution of end-member continental waters: The origin of acidity in southern Western Australia. GSA Today, 25(6), 4–10. https://doi.org/10.1130/GSATG231A.1
  • Benison, K. C., Bowen, B. B., Oboh-Ikuenobe, F. E., Jagniecki, E. A., LaClair, D. A., Story, S. L., Mormile, M. R., & Hong, B. Y. (2007). Sedimentology of acid saline lakes in southern Western Australia: Newly described processes and products of an extreme environment. Journal of Sedimentary Research, 77(5), 366–388. https://doi.org/10.2110/jsr.2007.038
  • Bestland, E. A., Retallack, G. J., Rice, A. E., & Mindszenty, A. (1996). Late Eocene detrital laterites in central Oregon: Mass balance geochemistry, depositional setting and landscape evolution. Geological Society of America Bulletin, 108(3), 285–302. https://doi.org/10.1130/0016-7606(1996)1080285:LEDLIC2.3.CO;2
  • Bindeman, I. N., Eiler, J. M., Wing, B. A., & Farquhar, J. (2007). Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochimica et Cosmochimica Acta, 71(9), 2326–2343. https://doi.org/10.1016/j.gca.2007.01.026
  • Boas, J. F., Cashion, J. D., Chadwick, J., Clark, M. J., Mackie, R. D., & Mattievich, E. (2005). Electron paramagnetic resonance of defects and Fe3+ in Kimberley Zebra Rock. Abstracts of the National Congress of Australian Institute of Physics, 16, 268. http://aipcongress2005.anu.edu.au/pdf/AIPC_Handbook_V2.pdf
  • Bockheim, J. G., & Hartemink, A. E. (2013). Classification and distribution of soils with lamellae in the USA. Geoderma, 206, 92–100. https://doi.org/10.1016/j.geoderma.2013.04.014
  • Bolhar, R., Van Kranendonk, M. J., & Kamber, B. S. (2005). A trace element study of siderite jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton: Formation from hydrothermal fluids and shallow seawater. Precambrian Research, 137(1–2), 93–114. https://doi.org/10.1016/j.precamres.2005.02.001
  • Bowler, J. M. (1973). Clay dunes: Their occurrence, formation and environmental significance. Earth-Science Reviews, 9(4), 315–338. https://doi.org/10.1016/0012-8252(73)90001-9
  • Breecker, D. O., & Retallack, G. J. (2014). Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 406, 1–8. https://doi.org/10.1016/j.palaeo.2014.04.012
  • Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D., & Bratt, J. (1992). Deformational mass transport and invasive processes in soil evolution. Science, 255(5045), 695–702. https://doi.org/10.1126/science.255.5045.695
  • Bureau of Meteorology. (2020). Climate statistics for Australian locations. Retrieved May 11, 2020, from http://www.bom.gov.au/climateaverages
  • Cant, D. J., & Walker, R. G. (1978). Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25(5), 625–648. https://doi.org/10.1111/j.1365-3091.1978.tb00323.x
  • Chadwick, O. A., Brimhall, G. H., & Hendricks, D. M. (1990). From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology, 3(3–4), 369–390. https://doi.org/10.1016/0169-555X(90)90012-F
  • Chen, C., Barcellos, D., Richter, D. D., Schroeder, P. A., & Thompson, A. (2019). Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soils and Sediments, 19(2), 785–797. https://doi.org/10.1007/s11368-018-2068-2
  • Clauer, N., O’Neil, J. R., Bonnnot-Courtois, C., & Holtzapfel, T. (1990). Morphological, chemical, and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments. Clays and Clay Minerals, 38(1), 33–46. https://doi.org/10.1346/CCMN.1990.0380105
  • Compton, J. S., White, R. A., & Smith, M. (2003). Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chemical Geology, 201(3–4), 239–255. https://doi.org/10.1016/S0009-2541(03)00239-0
  • Conway Morris, S. (2006). Darwin’s dilemma: The realities of the Cambrian ‘‘explosion. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 1069–1083. https://doi.org/10.1098/rstb.2006.1846
  • Corkeron, M. (2007). ‘Cap carbonates’ and Neoproterozoic glacigenic successions from the Kimberley region. Sedimentology, 54(4), 871–903. https://doi.org/10.1111/j.1365-3091.2007.00864.x
  • Corkeron, M. (2008). Deposition and palaeogeography of a glacigenic Neoproterozoic succession in the east Kimberley, Australia. Sedimentary Geology, 204(3–4), 61–82. https://doi.org/10.1016/j.sedgeo.2007.12.010
  • de Sá Paye, H., de Mello, J. W., de Magalhães Mascarenhas, G. R. L., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41. https://doi.org/10.1016/j.gexplo.2015.09.003
  • Dong, L., Xiao, S., Shen, B., & Zhou, C. (2008). Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: Tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, 165(1), 367–378. https://doi.org/10.1144/0016-76492007-074
  • Dow, D. B., & Gemuts, I. (1969). Geology of the Kimberley Region, Western Australia: The East Kimberley. Bulletin of the Bureau of Mineral Resources Geology & Geophysics Canberra, 106, 135.
  • Draut, A. E., & Rubin, D. M. (2008). The role of eolian sediment in the preservation of archeologic sites along the Colorado River corridor in Grand Canyon National Park. Arizona. U.S. Geological Survey Professional Paper, 1756, 1–71. https://doi.org/10.3133/pp1756
  • Draut, A. E., Rubin, D. M., Dierker, J. L., Fairley, H. C., Griffiths, R. E., Hazel, J. E., Hunter, R. E., Kohl, K., Leap, L. M., Nials, F. L., Topping, D. J., & Yeatts, M. (2008). Application of sedimentary-structure interpretation to geoarchaeological investigations in the Colorado River Corridor, Grand Canyon, Arizona, USA. Geomorphology, 101(3), 497–509. https://doi.org/10.1016/j.geomorph.2007.04.032
  • Driese, S. G., Simpson, E. L., & Eriksson, K. A. (1995). Redoximorphic Paleosols in alluvial and lacustrine deposits, 1.8 Ga Lochness Formation, Mount Isa, Australia; pedogenic processes and implications for paleoclimate. Journal of Sedimentary Research, 65(4a), 675–689. https://doi.org/10.1306/D4268199-2B26-11D7-8648000102C1865D
  • Duda, J. P., Blumenberg, M., Thiel, V., Simon, K., Zhu, M., & Reitner, J. (2014). Geobiology of a palaeoecosystem with Ediacara-type fossils: The Shibantan Member (Dengying Formation, South China). Precambrian Research, 255, 48–62. https://doi.org/10.1016/j.precamres.2014.09.012
  • Dunnet, D. (1965). A new occurrence of Proterozoic ‘jellyfish’ from the Kimberley Region, Western Australia. Report of the Bureau of Mineral Resources Geology and Geophysics, Canberra, 134, 5.
  • Ehleringer, J. R., Buchmann, N., & Flanagan, L. B. (2000). Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 10(2), 412–422.https://doi.org/10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2
  • Ehleringer, J. R., & Cook, C. S. (1998). Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: Preliminary observations based on small flask sampling. Tree Physiology, 18(8–9), 513–519. https://doi.org/10.1093/treephys/18.8-9.513
  • Evins, L. Z., Jourdan, F., & Phillips, D. (2009). The Cambrian Kalkarindji large igneous province: Extent and characteristics based on new 40Ar/39Ar and geochemical data. Lithos, 110(1–4), 294–304. https://doi.org/10.1016/j.lithos.2009.01.014
  • Ewing, S. A., Macalady, J. L., Warren‐Rhodes, K., McKay, C. P., & Amundson, R. (2008). Changes in the soil C cycle at the arid‐hyperarid transition in the Atacama Desert. Journal of Geophysics Research Biogeosciences, 113(G2), G02S90. https://doi.org/10.1029/2007JG000495
  • Fisk, H. N. (1951). Loess and Quaternary geology of the Lower Mississippi Valley. The Journal of Geology, 59(4), 333–356. https://doi.org/10.1086/625872
  • Fitzsimmons, K. E., Stern, N., & Murray-Wallace, C. V. (2014). Depositional history and archaeology of the central Lake Mungo lunette, Willandra Lakes, southeast Australia. Journal of Archaeological Science, 41, 349–364. https://doi.org/10.1016/j.jas.2013.08.004
  • Foden, J. D., Nesbitt, R. W., & Rutland, R. W. R. (1984). The geochemistry and crustal origin of the Archaean acid intrusive rocks of the Agnew Dome, Lawlers, Western Australia. Precambrian Research, 23(3–4), 247–271. https://doi.org/10.1016/0301-9268(84)90046-9
  • Food and Agriculture Organization. (1978). Soil map of the World 1:5,000,000. Vol. X. Australasia (p. 21). UNESCO.
  • Frey, M. (1987). Very low grade metamorphism of clasticsedimentary rocks. In M. Frey (Ed.), Low temperature metamorphism (pp. 9–58). Blackie.
  • Gallagher, T. M., & Sheldon, N. D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology, 41(6), 647–650. https://doi.org/10.1130/G34074.1
  • Gariboldi, K., Gioncada, A., Bosio, G., Malinverno, E., Di Celma, C., Tinelli, C., Cantalamessa, G., Landini, W., Urbina, M., & Bianucci, G. (2015). The dolomite nodules enclosing fossil marine vertebrates in the East Pisco Basin, Peru: Field and petrographic insights into the Lagerstätte formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 81–95. https://doi.org/10.1016/j.palaeo.2015.07.047
  • Gastaldo, R. A., Allent, G., & Huci, A. Y. (2009). The tidal character of fluvial sediments of the modern Mahakam River delta, Kalimantan, Indonesia. In B. W. Flemming (Ed.), Tidal signatures in modern and ancient sediments (Vol. 28, pp. 171–181). Special Publication of the International Association of Sedimentologists.
  • Gehling, J. G. (2000). Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research, 100(1–3), 65–95. https://doi.org/10.1016/S0301-9268(99)00069-8
  • Gehling, J. G., & Droser, M. L. (2009). Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews, 96(3), 196–206. https://doi.org/10.1016/j.earscirev.2009.03.002
  • Gehling, J. G., & Narbonne, G. M. (2007). Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon zone, Newfoundland. Canadian Journal of Earth Sciences, 44(3), 367–387. https://doi.org/10.1139/e07-003
  • Geidans, L. (1981). Zebra rock of Western Australia. Abstracts of the Geological Society of Australia, 3, 22.
  • Glaessner, M. F. (1969). Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2(4), 369–393. https://doi.org/10.1111/j.1502-3931.1969.tb01258.x
  • Grazhdankin, D. V., Goy, Y. Y., & Maslov, A. V. (2012). Late Riphean microbial colonies adapted to desiccating environments. Doklady Earth Sciences, 446(2), 1157–1161. https://doi.org/10.1134/S1028334X12100157
  • Grey, K. (1981a). Proterozoic “jellyfish” from the Mount Brooking area, Lissadell Sheet, Kimberley region. Geological Survey of Western Australia Palaeontology Report, 29, 1–4. https://dmpbookshop.eruditetechnologies.com.au/product/proterozoic-jellyfish-from-the-mount-brooking-area-lissadell-sheet-kimberley-region.do
  • Grey, K. (1981b). Additional samples of Proterozoic “jellyfish” from the Mount Brooking area, Lissadell Sheet, Kimberley region. Geological Survey of Western Australia Palaeontology Report, 52, 1–2. https://dmpbookshop.eruditetechnologies.com.au/product/additional-samples-of-proterozoic-jellyfish-from-the-mount-brooking-area-lissadell-sheet-kimberley-region.do
  • Grey, K., & Corkeron, M. (1998). Late Neoproterozoic stromatolites in glacigenic successions of the Kimberley region, Western Australia: Evidence for a younger Marinoan glaciation. Precambrian Research, 92(1), 65–87. https://doi.org/10.1016/S0301-9268(98)00068-0
  • Grimley, D. A., Follmer, L. R., & McKay, E. D. (1998). Magnetic susceptibility and mineral zonation controlled by provenance in loess along the Illinois and central Mississippi Valley. Quaternary Research, 49(1), 24–36. https://doi.org/10.1006/qres.1997.1947
  • Haines, P. W. (2000). Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Research, 100(1–3), 97–108. https://doi.org/10.1016/S0301-9268(99)00070-4
  • Harden, J. W. (1982). A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma, 28(1), 1–28. https://doi.org/10.1016/0016-7061(82)90037-4
  • Hawco, J. B., Kenchington, C. G., & McIlroy, D. (2019). A quantitative and statistical discrimination of morphotaxa within the Ediacaran genus Palaeopascichnus. Papers in Palaeontology. https://doi.org/10.1002/spp2.1290
  • Hayes, J. L., Riebe, C. S., Holbrook, S. W., Flinchum, B. A., & Hartsough, P. C. (2019). Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. Science Advances, 5(9), eaao0834. https://doi.org/10.1126/sciadv.aao0834
  • Hebert, C. L., Kaufman, A. J., Penniston-Dorland, S. C., & Martin, A. J. (2010). Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambrian Research, 182(4), 402–412. https://doi.org/10.1016/j.precamres.2010.07.008
  • Hobson, R. A. (1930). Zebra rock from Kimberley. Journal of the Royal Society of Western Australia, 16, 57–70.
  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic Snowball Earth. Science, 281(5381), 1342–1346. https://doi.org/10.1126/science.281.5381.1342
  • Huang, C-M., Wang, C-S., & Tang, Y. (2005). Stable carbon and oxygen isotopes of pedogenic carbonates in Ustic Vertisols: Implications for paleoenvironmental change. Pedosphere, 15(4), 539–544.
  • Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24(3), 361–387. https://doi.org/10.1111/j.1365-3091.1977.tb00128.x
  • Isbell, R. F. (1996). The Australian soil classification (revised ed., pp. 144). CSIRO Publishing.
  • Jafarzadeh, A. A., & Burnham, C. P. (1992). Gypsum crystals in soils. Journal of Soil Science, 43(3), 409–420. https://doi.org/10.1111/j.1365-2389.1992.tb00147.x
  • Jarraggirrem. (2017). Gija-English online dictionary. Retrieved May 28, 2020, from https://issuu.com/jarraggirrem/docs/gija-english-dictionary
  • Jensen, S. (2003). The Proterozoic and Earliest Cambrian trace fossil record: Patterns, problems, and perspectives. Integrative and Comparative Biology, 43(1), 219–228. https://doi.org/10.1093/icb/43.1.219
  • Jourdan, F., Hodges, K., Sell, B., Schaltegger, U., Wingate, M. T. D., Evins, L. Z., Söderlund, U., Haines, P. W., Phillips, D., & Blenkinsop, T. (2014). High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology, 42(6), 543–546. https://doi.org/10.1130/G35434.1
  • Kelka, U., Veveakis, M., Koehn, D., & Beaudoin, N. (2017). Zebra rocks: Compaction waves create ore deposits. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-14541-3
  • Kennedy, M. J. (1996). Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, δ13C excursions, and carbonate precipitation. Journal of Sedimentary Research, 66(6), 1050–1064. https://doi.org/10.2110/jsr.66.1050
  • Knauth, L. P., Brilli, M., & Klonowski, S. (2003). Isotope geochemistry of caliche developed on basalt. Geochimica et Cosmochimica Acta, 67(2), 185–195. https://doi.org/10.1016/S0016-7037(02)01051-7
  • Knoll, A., Walter, M., Narbonne, G., & Christie-Blick, N. (2006). The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39(1), 13–30. https://doi.org/10.1080/00241160500409223
  • Kolesnikov, A. V., Rogov, V. I., Bykova, N. V., Danelian, T., Clausen, S., Maslov, A. V., & Grazhdankin, D. V. (2018). The oldest skeletal macroscopic organism Palaeopascichnus linearis. Precambrian Research, 316, 24–37. https://doi.org/10.1016/j.precamres.2018.07.017
  • Kruse, P. D., Laurie, J. R., & Webby, B. D. (2004). Cambrian geology and palaeontology of the Ord Basin. Memoirs of the Association of Australasian Palaeontologists, 30, 1–58. http://hdl.handle.net/1959.14/41350
  • Kurtz, A. C., Derry, L. A., & Chadwick, O. A. (2001). Accretion of Asian dust to Hawaiian soils: Isotopic, elemental, and mineral mass balances. Geochimica et Cosmochimica Acta, 65(12), 1971–1983. https://doi.org/10.1016/S0016-7037(01)00575-0
  • Lan, Z. W., & Chen, Z. Q. (2012). Possible animal body fossils from the late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia. Gondwana Research, 21(1), 293–301. https://doi.org/10.1016/j.gr.2011.05.014
  • Lan, Z. W., & Chen, Z. Q. (2013). Proliferation of MISS-forming microbial mats after the late Neoproterozoic glaciations: Evidence from the Kimberley region, NW Australia. Precambrian Research, 224, 529–550. https://doi.org/10.1016/j.precamres.2012.11.008
  • Lan, Z. Q., Zhang, S., Li, X. H., Pandey, S. K., Sharma, M., Shukla, Y., Ahmad, S., Sarkar, S., & Zhai, M. (2020). Towards resolving the ‘jigsaw puzzle’ and age-fossil inconsistency within East Gondwana. Precambrian Research, 345, 105775. https://doi.org/10.1016/j.precamres.2020.105775
  • Larcombe, C. O. G. (1927). Some rocks from four miles east of Argyle Station, Ord River, King district, Kimberley division. Annual Progress Report of the Geological Survey of Western Australia, for 1926, 23–24. https://www.dmp.wa.gov.au/Documents/About-Us-Careers/AnnualReport_1926.pdf
  • Larcombe, C. O. G. (1925). Rock specimens from Ord River and Oakover River respectively. Annual Progress Report of the Geological Survey of Western Australia, for 1924 (Vol. 19). Geological Survey of Western Australia.
  • Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745–750. https://doi.org/10.1093/petrology/27.3.745
  • Liivamägi, S., Somelar, P., Mahaney, W. C., Kirs, J., Vircava, I., & Kirsimäe, K. (2014). Late Neoproterozoic Baltic paleosol: Intense weathering at high latitude? Geology, 42(4), 323–326. https://doi.org/10.1130/G35209.1
  • Lohmann, K. G. (1988). Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In N. P. James & P. W. Choquette (Eds.), Paleokarst (pp. 59–80). Springer.
  • Loughnan, F. C., & Roberts, F. I. (1990). Composition and origin of the ‘zebra rock’ from the East Kimberley region of Western Australia. Australian Journal of Earth Sciences, 37(2), 201–205. https://doi.org/10.1080/08120099008727920
  • Ludvigson, G. A., González, L. A., Fowle, D. A., Roberts, J. A., Driese, S. G., Villarreal, M. A., Smith, J. J., Suarez, M. B., & Nordt, L. C. (2013). Paleoclimatic applications and modern process studies of pedogenic siderite. In S. G. Driese & L. C. Nordt (Eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology (pp. 79–87, Vol. 104). Society of Economic Paleontologists & Mineralogists Special Publication.
  • Ludvigson, G. A., González, L. A., Metzger, R. A., Witzke, B. J., Brenner, R. L., Murillo, A. P., & White, T. S. (1998). Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology, 26(11), 1039–1042. https://doi.org/10.1130/0091-7613(1998)026<1039:MSLATU>2.3.CO;2
  • Marshall, P. E., Widdowson, M., & Murphy, D. T. (2016). The Giant Lavas of Kalkarindji: Rubbly pāhoehoe lava in an ancient continental flood basalt province. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 22–37. https://doi.org/10.1016/j.palaeo.2015.05.006
  • Martin, E., & Bindeman, I. (2009). Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California. Earth and Planetary Science Letters, 282(1–4), 102–114. https://doi.org/10.1016/j.epsl.2009.03.005
  • Mattievich, E., Chadwick, J., Cashion, J. D., Boas, J. F., Clark, M. J., Mackie, R. D. (2003). Macroscopic ferronematic liquid crystals determine the structure of Kimberley Zebra Rock [Paper presentation]. Conference Handbook Annual Condensed Matter Physics Meeting Wagga, Wagga, 27, 1–3. http://www.aip.org.au/wp-content/uploads/cmm/2003/WW03_33.pdf
  • Mawson, D., & Segnit, E. R. (1949). Purple slates of the Adelaide System. Transactions of the Royal Society of South Australia, 72, 276–280.
  • McKenzie, N., Jacquier, D., Isbale, R., & Brown, K. (2004). Australian soils and landscapes (p. 416). CSIRO.
  • Mehmood, M., Yaseen, M., Khan, E. U., & Khan, M. J. (2018). Dolomite and dolomitization model—a short review. International Journal of Hydrology, 2(5), 549–553. https://doi.org/10.15406/ijh.2018.02.00124
  • Melim, L. A., Swart, P. K., & Eberli, G. P. (2004). Mixing zone diagenesis in the subsurface of Florida and the Bahamas. Journal of Sedimentary Research, 74(6), 904–913. https://doi.org/10.1306/042904740904
  • Mory, A. J., & Beere, G. M. (1985). Palaeozoic stratigraphy of the Ord Basin, Western Australia and Northern Territory. Geological Survey of Western Australia Reports, 14, 36–45. https://dmpbookshop.eruditetechnologies.com.au//product/Palaeozoic-stratigraphy-of-the-Ord-Basin-Western-Australia-and-Northern-Territory.do
  • Murphy, C. P. (1983). Point counting pores and illuvial clay in thin section. Geoderma, 31(2), 133–150. https://doi.org/10.1016/0016-7061(83)90004-6
  • Nance, W. B., & Taylor, S. R. (1976). Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40(12), 1539–1551. https://doi.org/10.1016/0016-7037(76)90093-4
  • Navarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., de la Rosa, J., Small, A. M., Quinn, R. C., Grunthaner, F. J., Cáceres, L., Gomez-Silva, B., & McKay, C. P. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science (New York, N.Y.), 302(5647), 1018–1021. https://doi.org/10.1126/science.1089143
  • Neaman, A., Chorover, J., & Brantley, S. L. (2005a). Element mobility patterns record organic ligands in soils on early Earth. Geology, 33(2), 117–120. https://doi.org/10.1130/G20687.1
  • Neaman, A., Chorover, J., & Brantley, S. L. (2005b). Implications of the evolution of organic acid moieties for basalt weathering over geological time. American Journal of Science, 305(2), 147–185. https://doi.org/10.2475/ajs.305.2.147
  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0
  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129–147. https://doi.org/10.1086/629290
  • Noffke, N. (2010). Geobiology: Microbial mats in sandy deposits from the Archean Era to today. Springer.
  • Nordt, L. C., & Driese, S. D. (2010). New weathering index improves paleorainfall estimates from Vertisols. Geology, 38(5), 407–410. https://doi.org/10.1130/G30689.1
  • Novoselov, A. A., & de Souza Filho, C. R. (2015). Potassium metasomatism of Precambrian paleosols. Precambrian Research, 262, 67–83. https://doi.org/10.1016/j.precamres.2015.02.024
  • Olawsky, K. J., & Kofod, F. (2019). Miriwoong Woorlang Yawoorroonga-Woor. Mirima Dawang Woorlab-garring Language and Cultural Center.
  • Öpik, A. A. (1970). Redlichia of the Ordian (Cambrian) of Northern Australia and New South Wales. Bulletin of the Bureau of Mineral Resources Geology and Geophysics Canberra, 114, 1–66.
  • Óskarsson, B. V., Riishuus, M. S., & Arnalds, Ó. (2012). Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma, 189-190, 635–651. https://doi.org/10.1016/j.geoderma.2012.05.030
  • Parcha, S. K., & Pandey, S. (2011). Ichnofossils and their significance in the Cambrian successions of the Parahio Valley in the Spiti Basin, Tethys Himalaya, India. Journal of Asian Earth Sciences, 42(6), 1097–1116. https://doi.org/10.1016/j.jseaes.2011.04.028
  • Peckmann, J., Goedert, J. L., Thiel, V., Michaelis, W., & Reitner, J. (2002). A comprehensive approach to the study of methane‐seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology, 49(4), 855–873. https://doi.org/10.1046/j.1365-3091.2002.00474.x
  • Plumb, K. A., Derrick, G. M., Needham, R. S., & Shaw, R. D. (1981). The Proterozoic of northern Australia. In. D. R. Hunter (Ed.), Precambrian of the southern hemisphere. (pp. 205–307, Vol. 2). Elsevier.
  • Prave, A. R. (2002). Life on land in the Proterozoic: Evidence from the Torridonian rocks of northwest Scotland. Geology, 30(9), 811–814. https://doi.org/10.1130/0091-7613(2002)0300811:LOLITP2.0.CO;2
  • Pu, J. P., Bowring, S. A., Ramezani, J., Myrow, P., Raub, T. D., Landing, E., Mills, A., Hodgin, E., & Macdonald, F. A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44(11), 955–958. https://doi.org/10.1130/G38284.1
  • Ramakrishnan, D., & Tiwari, K. C. (1999). REE chemistry of arid zone calcrete profiles–A case study from the Thar Desert. India. Turkish Journal of Earth Sciences, 7(2), 97–104. https://journals.tubitak.gov.tr/earth/abstract.htm?id=2002
  • Rawling, J. E. (2000). A review of lamellae. Geomorphology, 35(1–2), 1–9. https://doi.org/10.1016/S0169-555X(00)00015-5
  • Renaut, R. W., & Tiecerlin, J-J. (1994). Lake Bogoria, Kenya Rift Valley − a sedimentological overview. In R. W. Renaut & W. M. Last (Eds.), Sedimentology and Geochemistry of Modern and Ancient Saline Lakes (pp. 101–124, Vol. 50). Society for Sedimentary Geology Special Publication.
  • Retallack, G. J. (1976). Triassic palaeosols in the upper Narrabeen Group of New South Wales. Part I: Features of the palaeosols. Journal of the Geological Society of Australia, 23(4), 383–399. https://doi.org/10.1080/00167617608728953
  • Retallack, G. J. (1991a). Untangling the effects of burial alteration and ancient soil formation. Annual Review of Earth and Planetary Sciences, 19(1), 183–206. https://doi.org/10.1146/annurev.ea.19.050191.001151
  • Retallack, G. J. (1991b). Miocene paleosols and ape habitats of Pakistan and Kenya. Oxford University Press.
  • Retallack, G. J. (2005). Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33(4), 333–336. https://doi.org/10.1130/G21263.1
  • Retallack, G. J. (2008). Cambrian paleosols and landscapes of South Australia. Australian Journal of Earth Sciences, 55(8), 1083–1106. https://doi.org/10.1080/08120090802266568
  • Retallack, G. J. (2011). Neoproterozoic loess and limits to Snowball Earth. Journal of the Geological Society of London, 168(2), 289–308. https://doi.org/10.1144/0016-76492010-051
  • Retallack, G. J. (2012a). Criteria for distinguishing microbial mats and earths. In N. Noffke & H. Chafetz (Eds.), Microbial mats in siliciclastic sediments (pp. 136–152). Society of Economic Paleontologists and Mineralogists Special Paper. 101.
  • Retallack, G. J. (2012b). Mallee model for mammal communities of the early Cenozoic and Mesozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 342-343, 111–129. https://doi.org/10.1016/j.palaeo.2012.05.009
  • Retallack, G. J. (2013). Ediacaran life on land. Nature, 493(7430), 89–92. https://doi.org/10.1038/nature11777
  • Retallack, G. J. (2014). Affirming life aquatic for the Ediacara biota in China and Australia: COMMENT. Geology, 42(3), e325–e325. https://doi.org/10.1130/G35030C.1
  • Retallack, G. J. (2015a). Silurian vegetation stature and density inferred from fossil soils and plants in Pennsylvania, U.S.A. Journal of the Geological Society London, 172(6), 693–709. https://doi.org/10.1144/jgs2015-022
  • Retallack, G. J. (2015b). Late Ordovician glaciation initiated by early land plant evolution, and punctuated by greenhouse mass-extinctions. The Journal of Geology, 123(6), 509–538. https://doi.org/10.1086/683663
  • Retallack, G. J. (2016). Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Research, 36, 107–110. https://doi.org/10.1016/j.gr.2016.05.001
  • Retallack, G. J. (2018). Oldest recognized paleosols on Earth, Panorama Formation (3.46 Ga), Western Australia. Palaeogeography Palaeoclimatology Palaeoecology, 489, 230–248. https://doi.org/10.1016/j.palaeo.2017.10.013
  • Retallack, G. J. (2019). Interflag sandstone laminae, a novel fluvial sedimentary structure with implication for Ediacaran paleoenvironments. Sedimentary Geology, 379, 60–76. https://doi.org/10.1016/j.sedgeo.2018.11.003
  • Retallack, G. J. (2020). Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography Palaeoclimatology Palaeoecology, 540, 109536. https://doi.org/10.1016/j.palaeo.2019.109536
  • Retallack, G. J., & Broz, A. P. (2020). Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology. https://doi.org/10.1080/08912963.2020.175581.
  • Retallack, G. J., & Huang, C. (2010). Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology, 38(5), 403–406. https://doi.org/10.1130/G30514.1
  • Retallack, G. J., Krinsley, D. H., Fischer, R., Razink, J. J., & Langworthy, K. A. (2016). Archean coastal-plain paleosols and life on land. Gondwana Research, 40, 1–20. https://doi.org/10.1016/j.gr.2016.08.003
  • Retallack, G. J., & Mao, X. (2019). Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 532, 109266. https://doi.org/10.1016/j.palaeo.2019.109266
  • Retallack, G. J., Marconato, A., Osterhout, J. T., Watts, K. E., & Bindeman, I. N. (2014). Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Journal of the Geological Society of London, 171(5), 709–722. https://doi.org/10.1144/jgs2014-016
  • Retallack, G. J., & Mindszenty, A. (1994). Well preserved Late Precambrian paleosols from northwest Scotland. Journal of Sedimentary Research, A64(2), 264–281. https://doi.org/10.1306/D4267D7A-2B26-11D7-8648000102C1865D
  • Ruhe, R. V., & Olson, C. G. (1980). Clay mineral indicators of glacial and non-glacial sources of Wisconsinan loesses in southern Indiana, USA. Geoderma, 24(4), 283–297. https://doi.org/10.1016/0016-7061(80)90056-7
  • Runnegar, B. (1995). Vendobionta or metazoa? Developments in understanding the Ediacara ‘‘fauna. Neues Jahrbuch Für Geologie Und Paläontologie—Abhandlungen, 195(1–3), 303–318. https://doi.org/10.1127/njgpa/195/1995/303
  • Sadek, S., Rabih, S., & Lagzi, I. (2010). Liesegang patterns in nature: A diverse scenery across the sciences. Precipitation Patterns in Reaction-Diffusion Systems, 661, 1–43.
  • Schulz, M., Stonestrom, D., Lawrence, C., Bullen, T., Fitzpatrick, J., Kyker-Snowman, E., Manning, J., & Mnich, M. (2016). Structured heterogeneity in a marine terrace chronosequence: Upland mottling. Vadose Zone Journal, 15(2), vzj2015.07.0102. https://doi.org/10.2136/vz/2015.07.0102 https://doi.org/10.2136/vzj2015.07.0102
  • Scotese, C. R. (2009). Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia. In J. Craig, J. Thurow, B. Thusu, A. Whitham & Y. Abutarruma (Eds.), Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa (pp. 67–83). Geological Society of London, Special Publication, 326. https://doi.org/10.1144/SP326.4
  • Seilacher, A., Grazhdankin, D., & Legouta, A. (2003). Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7(1), 43–54. https://doi.org/10.2517/prpsj.7.43
  • Setti, M., Marinoni, L., & Lopez-Galindo, A. (2004). Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea. Clay Minerals, 39(4), 405–421. https://doi.org/10.1180/000985503540143
  • Sheldon, N. D. (2003). Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River basalt, Oregon. Geological Society of America Bulletin, 115(11), 1377–1387. https://doi.org/10.1130/B25223.1
  • Sheldon, N. D., & Retallack, G. J. (2001). Equation for compaction of paleosols due to burial. Geology, 29(3), 247–250. https://doi.org/10.1130/0091-7613(2001)0290247:EFCOPD2.0.CO;2
  • Sheldon, N. D., Retallack, G. J., & Tanaka, S. (2002). Geochemical climofunctions from North American soils and application to paleosols across the Eocene–Oligocene boundary in Oregon. The Journal of Geology, 110(6), 687–696. https://doi.org/10.1086/342865
  • Shen, B., Xiao, S., Zhou, C., & Yuan, X. (2009). Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges area. Journal of Paleontology, 83(4), 575–587. https://doi.org/10.1666/08-042R1.1
  • Soil Survey Staff. (2014). Keys to soil taxonomy. Natural Resources Conservation Service.
  • Sprigg, R. C. (1949). Early Cambrian “jellyfishes” at Ediacara, South Australia and Mount John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia, 73(1), 72–99.
  • Stace, H. C. T., Hubble, G. D., Brewer, R., Northcote, K. H., Sleeman, J. R., Mulcahy, M. J., & Hallsworth, E. G. (1968). A handbook of Australian soils. Rellim.
  • Stimson, M. R., Miller, R. F., MacRae, R. A., & Hinds, S. J. (2017). An ichnotaxonomic approach to wrinkled microbially induced sedimentary structures. Ichnos, 24(4), 291–316. https://doi.org/10.1080/10420940.2017.1294590
  • Sugahara, H., Sugitani, K., Mimura, K., Yamashita, F., & Yamamoto, K. (2010). A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil-bearing black cherts. Precambrian Research, 177(1–2), 73–87. https://doi.org/10.1016/j.precamres.2009.10.005
  • Surge, D. M., Savarese, M., Dodd, J. R., & Lohmann, K. C. (1997). Carbon isotopic evidence for photosynthesis in Early Cambrian oceans. Geology, 25(6), 503–506. https://doi.org/10.1130/0091-7613(1997)0250503:CIEFPI2.3.CO;2
  • Sweet, I. P., Mendum, J. R., Morgan, C. M., & Pontifex, I. R. (1974). The geology of the Northern Victoria River Region, NT. Bureau of Mineral Resources Geology and Geophysics Report (Vol. 166). Bureau of Mineral Resources Geology and Geophysics. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/15078
  • Sweet, I. P., Pontifex, I. R., & Morgan, C. M. (1974). Geology of the Auvergne 1:250 000 Sheet Area, NT (excluding Bonaparte Gulf Basin). Bureau of Mineral Resources Geology and Geophysics Report (Vol. 161). Bureau of Mineral Resources Geology and Geophysics. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/15076
  • Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80(4), 261–279. https://doi.org/10.1016/0168-9622(90)90009-2
  • Taylor, R. S., Hawco, J. B., Nichols, R., & McIlroy, D. (2019). A critical reappraisal of the holotype of Beothukis mistakensis, a unique exceptionally preserved rangeomorph organism from Mistaken Point, Newfoundland, Canada. Estudios Geológicos, 75(2), e117. https://doi.org/10.3989/egeol.43586.572
  • Terry, R. D., & Chilingar, G. V. (1955). Summary of “Concerning some additional aids in studying sedimentary formations,” by MS Shvetsov. Journal of Sedimentary Research, 25(3), 229–234. https://doi.org/10.1306/74D70466-2B21-11D7-8648000102C1865D
  • Trainer, D. W. (1931). Zebra Rock. American Mineralogist, 16, 221–225.
  • Ufnar, D. F., Gröcke, D. R., & Beddows, P. A. (2008). Assessing pedogenic calcite stable-isotope values: Can positive linear covariant trends be used to quantify palaeo-evaporation rates?. Chemical Geology, 256(1–2), 46–51. https://doi.org/10.1016/j.chemgeo.2008.07.022
  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., & Strauss, H. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1–3), 59–88. https://doi.org/10.1016/S0009-2541(99)00081-9
  • Vepraskas, M. J., & Sprecher, S. W. (1997). Summary. In M. J. Vepraskas & S. W. Sprecher (Eds.), Aquic conditions and hydric soils: The problem soils (pp. 153–156). Soil Science Society of America Special Publication 150.
  • Wallace, M. W., & Hood, A. S. (2018). Zebra textures in carbonate rocks: Fractures produced by the force of crystallization during mineral replacement. Sedimentary Geology, 368, 58–67. https://doi.org/10.1016/j.sedgeo.2018.03.009
  • Walter, M. R. (1976). Stromatolites. Elsevier.
  • Wan, B., Chen, Z., Yuan, X., Pang, K., Tang, Q., Guan, C., Wang, X., Pandey, S. K., Droser, M. L., & Xiao, S. (2020). A tale of three taphonomic modes: The Ediacaran fossil Flabellophyton preserved in limestone, black shale, and sandstone. Gondwana Research, 84, 296–314. https://doi.org/10.1016/j.gr.2020.04.003
  • Weinberger, R. (2001). Evolution of polygonal patterns in stratified mud during desiccation: The role of flaw distribution and layer boundaries. Geological Society of America Bulletin, 113(1), 20–31.https://doi.org/10.1130/0016-7606(2001)1130020:EOPPIS2.0.CO;2
  • Williams, G. E., Gostin, V. A., McKirdy, D. M., & Preiss, W. V. (2008). The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: Sedimentary facies and palaeoenvironments. Precambrian Research, 163(3–4), 307–331. https://doi.org/10.1016/j.precamres.2007.12.001
  • Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
  • Ziegenbalg, S. B., Brunner, B., Rouchy, J. M., Birgel, D., Pierre, C., Böttcher, M. E., Caruso, A., Immenhauser, A., & Peckmann, J. (2010). Formation of secondary carbonates and native sulphur in sulphate-rich Messinian strata, Sicily. Sedimentary Geology, 227(1–4), 37–50. https://doi.org/10.1016/j.sedgeo.2010.03.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.