Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 68, 2021 - Issue 5
411
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geology and geochronology of the Two-Thirty prospect, Northparkes district, NSW

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 659-683 | Received 18 Jun 2020, Accepted 30 Nov 2020, Published online: 17 Jan 2021

References

  • Aleinikoff, J. N., Creaser, R. A., Lowers, H. A., Magee, C. W., & Grauch, R. I. (2012). Multiple age components in individual molybdenite grains. Chemical Geology, 300–301, 55–60. https://doi.org/10.1016/j.chemgeo.2012.01.011
  • Armistead, S. E., Skirrow, R. G., Fraser, G. L., Huston, D. L., Champion, D. C., & Norman, M. D. (2017). Gold and intrusion-related Mo–W mineral systems in the southern Thomson Orogen, New South Wales. Geological Survey of New South Wales. https://doi.org/10.11636/record.2017.005
  • Arundell, M. C. (1998). The geology and mineralisation of the E31 copper–gold prospect [unpublished Masters of Economic Geology thesis]. University of Tasmaina, Hobart, TAS, p. 82.
  • Barra, F., Deditius, A., Reich, M., Kilburn, M. R., Guagliardo, P., & Roberts, M. P. (2017). Dissecting the Re–Os molybdenite geochronometer. Scientific Reports, 7(1), 16054. https://doi.org/10.1038/s41598-017-16380-8
  • Barton, I. F., Rathkopf, C. A., & Barton, M. D. (2020). Rhenium in molybdenite: A database approach to identifying geochemical controls on the distribution of a critical element. Mining, Metallurgy and Exploration, 37(1), 21–37. https://doi.org/10.1007/s42461-019-00145-0
  • Berkley Geochronology Center. (2015). Isoplot extension for Microsoft Excel 2007; A geochronological toolkit for Microsoft Excel: Vol. 3.75. Berkley Geochronology Centre.
  • Berzina, A. N., Sotnikov, V. I., Economou-Eliopoulos, M., & Eliopoulos, D. G. (2005). Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1–2), 91–113. https://doi.org/10.1016/j.oregeorev.2004.12.002
  • Blackwell, J. L. (2010). Characteristics and origins of breccias in a volcanic-hosted alkalic epithermal gold deposit [unpublished PhD thesis]. Ladolam, Lihir Island, Papua New Guinea University of Tasmania, Hobart. TAS. p 190.
  • Butera, K. M., Williams, I. S., Blevin, P. L., & Simpson, C. J. (2001). Zircon U–Pb dating of early Palaeozoic monzonitic intrusives from the Goonumbla area. Australian Journal of Earth Sciences, 48(3), 457–464. https://doi.org/10.1046/j.1440-0952.2001.00870.x
  • Ciobanu, C. L., Cook, N. J., Kelson, C. R., Guerin, R., Kalleske, N., & Danyushevsky, L. (2013). Trace element heterogeneity in molybdenite fingerprints stages of mineralization. Chemical Geology, 347, 175–189. https://doi.org/10.1016/j.chemgeo.2013.03.011
  • Cooke, D. R., Wilson, A. J., House, M. J., Wolfe, R. C., Walshe, J. L., Lickfold, V., & Crawford, A. J. (2007). Alkalic porphyry Au–Cu and associated mineral deposits of the Ordovician to early Silurian Macquarie Arc, New South Wales. Australian Journal of Earth Sciences, 54(2–3), 445–463. https://doi.org/10.1080/08120090601146771
  • Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim gold–copper systems; structure, alteration, and mineralization (Special Publication No. 6, Vol. 6). Society of Economic Geologists.
  • Crawford, A. J. (2001). Tectono-magmatic development of the Ordovician volcanic belts in central western NSW, and the timing and location of porphyry-style mineralisation within the Macquarie Arc. In A. J. Crawford, D. R. Cooke, & R. A. Glen (Eds.), NSW Ordovician SPIRT report (pp. 7.41–7.52). Centre for Ore Deposit Research.
  • Crawford, A. J., Glen, R. A., Cooke, D. R., & Percival, I. G. (2007). Geological evolution and metallogenesis of the Ordovician Macquarie Arc, Lachlan Orogen. Australian Journal of Earth Sciences, 54(2–3), 137–141. https://doi.org/10.1080/08120090701221615
  • Crawford, A. J., Meffre, S., Squire, R. J., Barron, L. M., & Falloon, T. J. (2007). Middle and Late Ordovician magmatic evolution of the Macquarie Arc, Lachlan Orogen. Australian Journal of Earth Sciences, 54(2–3), 181–214. https://doi.org/10.1080/08120090701227471
  • Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGoldrick, P., & Shelley, M. (2011). Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry: Exploration, Environment, Analysis, 11(1), 51–60. https://doi.org/10.1144/1467-7873/09-244
  • Davies, A. G. S. (2002). Geology and genesis of the Kelian gold deposit East Kalimantan, Indonesia [unpublished PhD thesis] University of Tasmania, Hobart, TAS, 348. p.
  • Einaudi, M. T. (1997). Mapping altered and mineralized rocks; An introduction to the “Anaconda method”. Stanford University.
  • Fox, N., Cooke, D. R., Harris, A. C., Collett, D., & Eastwood, G. (2015). Porphyry Au–Cu mineralization controlled by reactivation of an arc-transverse volcanosedimentary subbasin. Geology, 43(9), 811–814. https://doi.org/10.1130/G36992.1
  • Glen, R. A., Crawford, A. J., & Cooke, D. R. (2007). Tectonic setting of porphyry Cu–Au mineralisation in the Ordovician–early Silurian Macquarie Arc, eastern Lachlan Orogen. Australian Journal of Earth Sciences, 54(2–3), 465–479. https://doi.org/10.1080/08120090701221672
  • Glen, R. A., Crawford, A. J., Percival, I. G., & Barron, L. M. (2007). Early Ordovician development of the Macquarie Arc, Lachlan Orogen. Australian Journal of Earth Sciences, 54(2–3), 167–179. https://doi.org/10.1080/08120090601146797
  • Glen, R. A., Percival, I. G., & Quinn, C. D. (2009). Ordovician continental margin terranes in the Lachlan Orogen, Australia: Implications for tectonics in an accretionary orogen along the east Gondwana margin. Tectonics, 28(6), n/a–n/a. https://doi.org/10.1029/2009TC002446
  • Glen, R. A., Quinn, C. B., & Cooke, D. R. (2012). The Macquarie Arc, Lachlan Orogen, New South Wales; its evolution, tectonic setting and mineral deposits. Episodes, 35(1), 177–186. https://doi.org/10.18814/epiiugs/2012/v35i1/017
  • Glen, R. A., Spencer, R., Willmore, A., David, V., & Scott, R. J. (2007). Junee—Narromine Volcanic Belt, Macquarie Arc, Lachlan Orogen, New South Wales: Components and structure. Australian Journal of Earth Sciences, 54(2–3), 215–241. https://doi.org/10.1080/08120090601146805
  • Gregory, M. J., Lang, J. R., Gilbert, S., & Hoal, K. O. (2013). Geometallurgy of the Pebble porphyry copper–gold–molybdenum deposit, Alaska: Implications for gold distribution and paragenesis. Economic Geology, 108(3), 463–482. https://doi.org/10.2113/econgeo.108.3.463
  • Harris, A. C., Cooke, D. R., Cuison, A. L. G., Groome, M., Wilson, A. J., Fox, N., Holliday, J., & Tosdal, R. (2020). Geologic evolution of Late Ordovician to early Silurian alkalic porphyry Au–Cu deposits at Cadia, New South Wales, Australia. In R. H. Sillitoe, R. J. Goldfarb, F. Robert, & S. F. Simmons (Eds.), Geology of the world's major gold deposits and provinces (pp. 621–643, Special Publication No. 23). Society of Economic Geologists. ISBN 978-1-629493-12-1 [Research Book Chapter]
  • Harris, A. C., & Holcombe, R. J. (2014). Quartz vein emplacement mechanisms at the E26 porphyry Cu–Au deposit. Economic Geology, 109(4), 1035–1050. https://doi.org/10.2113/econgeo.109.4.1035
  • Harrison, R. L., Maryono, A., Norris, M. S., Rohrlach, B. D., Cooke, D. R., Thompson, J. M., Creaser, R. A., & Thiede, D. S. (2018). Geochronology of the Tumpangpitu porphyry Au–Cu–Mo and high-sulfidation epithermal Au–Ag–Cu deposit: Evidence for pre- and postmineralization diatremes in the Tujuh Bukit district, southeast Java, Indonesia. Economic Geology, 113(1), 163–192. https://doi.org/10.5382/econgeo.2018.4547
  • Harris, A. C., Percival, I. G., Cooke, D. R., Tosdal, R. M., Fox, N., Allen, C. M., Tedder, I., McMillan, C., Dunham, P., & Collett, D. (2014). Marine volcanosedimentary basins hosting porphyry Au–Cu deposits, Cadia Valley, New South Wales, Australia. Economic Geology, 109(4), 1117–1135. https://doi.org/10.2113/econgeo.109.4.1117
  • Heithersay, P. S., O’Neill, W. J., van der Helder, P., Moore, C. R., & Harbon, P. G. (1990). Goonumbla porphyry copper district; Endeavour 26 North, Endeavour 22 and Endeavour 27 copper–gold deposits. Monograph Series—Australasian Institute of Mining and Metallurgy, 14, 1385–1398.
  • Heithersay, P. S., & Walshe, J. L. (1995). Endeavour 26 North; a porphyry copper–gold deposit in the Late Ordovician, shoshonitic Goonumbla Volcanic Complex. Economic Geology, 90(6), 1506–1532. https://doi.org/10.2113/gsecongeo.90.6.1506
  • Hnatyshin, D., Creaser, R. A., Meffre, S., Stern, R. A., Wilkinson, J. J., & Turner, E. C. (2020). Understanding the microscale spatial distribution and mineralogical residency of Re in pyrite: Examples from carbonate-hosted Zn–Pb ores and implications for pyrite Re–Os geochronology. Chemical Geology, 533, 119427. https://doi.org/10.1016/j.chemgeo.2019.119427
  • Hogmalm, K. J., Dahlgren, I., Fridolfsson, I., & Zack, T. (2019). First in situ Re–Os dating of molybdenite by LA-ICP-MS/MS. Mineralium Deposita, 54(6), 821–828. https://doi.org/10.1007/s00126-019-00889-1
  • Holliday, J. R., Wilson, A. J., Blevin, P. L., Tedder, I. J., Dunham, P. D., & Pfitzner, M. (2002). Porphyry gold–copper mineralisation in the Cadia District, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism. Mineralium Deposita, 37(1), 100–116. https://doi.org/10.1007/s00126-001-0233-8
  • Jones, G. J. (1985). The Goonumbla porphyry copper deposits. Economic Geology, 80(3), 591–613. https://doi.org/10.2113/gsecongeo.80.3.591
  • Jones, B. M. (1991). Geological setting and genesis fo the Endeavour 44 Au, Pb, Zn skarn, Parkes, NSW [unpublished B.Sc Honours thesis]. Australian National University, Canberra, ACT, 143 p.
  • Jones, P. J. (1996). AGSO Phanerozoic timescale 1995: wall chart and explanatory notes. In P. J. Jones (compiler) with personnel of the AGSO Timescale Calibration and Development Project 1995 (O. Australian Geological Survey (ed.); Issue accessed from http://nla.gov.au/nla.cat–vn961366). Oxford University Press.
  • Kemp, A. I. S., Blevin, P. L., & Norman, M. D. (2020). A SIMS U–Pb (zircon) and Re–Os (molybdenite) isotope study of the early Paleozoic Macquarie Arc, southeastern Australia: Implications for the tectono-magmatic evolution of the paleo-Pacific Gondwana margin. Gondwana Research, 82, 73–96. https://doi.org/10.1016/j.gr.2019.12.015
  • Krynen, J. P., Sherwin, L., & Clarke, I. (1990). Stratigraphy and structure. Records of the Geological Survey of New South Wales, 23(1), 1–76.
  • Large, R. R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., & Foster, J. (2009). Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104(5), 635–668. https://doi.org/10.2113/gsecongeo.104.5.635
  • Lickfold, V., Cooke, D. R., Crawford, A. J., & Fanning, C. M. (2007). Shoshonitic magmatism and the formation of the Northparkes porphyry Cu–Au deposits, New South Wales. Australian Journal of Earth Sciences, 54(2–3), 417–444. https://doi.org/10.1080/08120090601175754
  • Lickfold, V., Cooke, D. R., Smith, S. G., & Ullrich, T. D. (2003). Endeavour copper–gold porphyry deposits, Northparkes, New South Wales: Intrusive history and fluid evolution. Economic Geology, 98(8), 1607–1636. https://doi.org/10.2113/gsecongeo.98.8.1607
  • Lickfold, V. (2002). Intrusive history and volatile evolution of the Endeavour porphyry Cu–Au deposits, Goonumbla district [unpublished PhD Thesis]. NSW, Australia University of Tasmania, Hobart, TAS, 232. p.
  • Mattinson, J. M. (2005). Zircon U/Pb chemical abrasion (CA-TIMS) method; combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1–2), 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011
  • McPhie, J., Doyle, M., & Allen, R. (1993). Volcanic textures; a guide to the interpretation of textures in volcanic rocks (p. 196). University of Tasmania, Centre for Ore Deposit and Exploration Studies.
  • Meffre, S., Belousova, E., Zhukova, I., Leslie, C., Wells, T. J., & Cuison, L. (2018). The Cambrian Island Arc basement of the Macquarie Arc, SE Australia. Abstracts Australian Geoscience Council Convention.
  • Mort, K., & Woodcock, N. H. (2008). Quantifying fault breccia geometry; Dent Fault. Journal of Structural Geology, 30(6), 701–709. https://doi.org/10.1016/j.jsg.2008.02.005
  • Norman, M., Bennett, V., McCulloch, M. (2004). New Re–Os ages of molybdenite from granite-related deposits of Eastern Australia using an improved multi-collector ICP-MS technique [Paper presentation]. MORE-SGEG Symposium, July 2004.
  • Pacey, A. (2016). The characteristics, geochemistry and origin of propylitic alteration in the northparkes porphyry Cu–Au system. Imperial College. https://books.google.com.au/books?id=nmzYxgEACAAJ
  • Pacey, A., Wilkinson, J. J., Owens, J., Priest, D., Cooke, D. R., Miller, I. L., & Millar, I. L. (2019). The anatomy of an alkalic porphyry Cu–Au system: geology and alteration at Northparkes mines. Economic Geology, 114(3), 441–472. https://doi.org/10.5382/econgeo.4644
  • Percival, I. G., & Glen, R. A. (2007). Ordovician to earliest Silurian history of the Macquarie Arc, Lachlan Orogen, New South Wales. Australian Journal of Earth Sciences, 54(2–3), 143–165. https://doi.org/10.1080/08120090601146789
  • Perkins, C., McDougall, I., Claoue-Long, J., & Heithersay, P. S. (1990). 40Ar/39Ar and U–Pb geochronology of the Goonumbla porphyry Cu–Au deposits, New South Wales, Australia. Economic Geology, 85(8), 1808–1824. https://doi.org/10.2113/gsecongeo.85.8.1808
  • Perkins, C., Walshe, J. L., & Morrison, G. (1995). Metallogenic episodes of the Tasman Fold Belt system, eastern Australia. Economic Geology, 90(6), 1443–1466. https://doi.org/10.2113/gsecongeo.90.6.1443
  • Plotinskaya, O. Y., Abramova, V. D., Groznova, E. O., Tessalina, S. G., Seltmann, R., & Spratt, J. (2018). Trace-element geochemistry of molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia). Mineralogical Magazine, 82(S1), S281–S306. https://doi.org/10.1180/minmag.2017.081.106
  • Rathkopf, C., Mazdab, F., Barton, I., & Barton, M. D. (2017). Grain scale and deposit scale heterogeneity of Re distribution in molybdenite at the Bagdad porphyry Cu–Mo deposit, Arizona. Journal of Geochemical Exploration, 178, 45–54. https://doi.org/10.1016/j.gexplo.2017.03.011
  • Rinne, M. L., Cooke, D. R., Harris, A. C., Finn, D. J., Allen, C. M., Heizler, M. T., & Creaser, R. A. (2018). Geology and geochronology of the Golpu porphyry and Wafi epithermal deposit, Morobe Province, Papua New Guinea. Economic Geology, 113(1), 271–294. https://doi.org/10.5382/econgeo.2018.4551
  • Robertson, P. K., & Callaghan, J. F. O. (1988). Display of remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 49–59. https://doi.org/10.1109/36.2999
  • Rush, J. A. (2013). Geology of the Marsden Cu–Au Porphyry [NSW unpublished B.Sc Honours thesis]. University of Tasmania, Hobart, TAS, 96. p.
  • Schaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology , 402, 89–110. https://doi.org/10.1016/j.chemgeo.2015.02.028
  • Seedorff, E., Dilles, J. H., Proffett, Jr, J. M., Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A., & Barton, M. D. (2005). Porphyry deposits; characteristics and origin of hypogene features. In Economic geology; One hundredth anniversary (vol. 1905–2005, pp. 251–298). Society of Economic Geologists.
  • Selby, D., Creaser, R. A., Stein, H., Markey, R. J., & Hannah, J. (2007). Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta, 71(8), 1999–2013. https://doi.org/10.1016/j.gca.2007.01.008
  • Shirey, S. B., & Walker, R. J. (1995). Carius tube digestion for low-blank rhenium–osmium analysis. Analytical Chemistry, 67(13), 2136–2141. https://doi.org/10.1021/ac00109a036
  • Sillitoe, R. H. (1985). Ore-related breccias in volcanoplutonic arcs. Economic Geology, 80(6), 1467–1514. https://doi.org/10.2113/gsecongeo.80.6.1467
  • Simpson, C. J., Cas, R. A. F., & Arundell, M. C. (2005). Volcanic evolution of a long-lived Ordovician island-arc province in the Parkes region of the Lachlan fold belt, southeastern Australia. Australian Journal of Earth Sciences, 52(6), 863–886. https://doi.org/10.1080/08120090500304273
  • Smith, S., Mowat, B., & Sharry, M. (2004). Macquarie Arc porphyry Au–Cu systems; a review of the critical exploration features. Abstracts—Geological Society of Australia, 74, 51–62.
  • Smith, N., & van der Walt, S. (2015). A better defualt colourmap for Matplotlib [Paper presentation]. SciPy 2015—Scientific computing with python.
  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
  • Steadman, J. A., Large, R. R., Meffre, S., Olin, P. H., Danyushevsky, L. V., Gregory, D. D., Belousov, I., Lounejeva, E., Ireland, T. R., & Holden, P. (2015). Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile Deposit, Kalgoorlie, Western Australia. Economic Geology, 110(5), 1157–1191. https://doi.org/10.2113/econgeo.110.5.1157
  • Stein, H. J. (2014). Dating and tracing the history of ore formation. In Treatise on Geochemistry: Second Edition. (2nd ed., Vol. 13). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.01104-9
  • Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L., & Scherstén, A. (2001). The remarkable Re–Os chronometer in molybdenite: How and why it works. Terra Nova, 13(6), 479–486. https://doi.org/10.1046/j.1365-3121.2001.00395.x
  • Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12(1), 1–33. https://doi.org/10.1016/0012-8252(76)90052-0
  • Sykora, S., Cooke, D. R., Meffre, S., Stephanov, A. S., Gardner, K., Scott, R., Selley, D., & Harris, A. C. (2018). Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing. Economic Geology, 113(1), 193–208. https://doi.org/10.5382/econgeo.2018.4548
  • Sykora, S., Selley, D., Cooke, D. R., & Harris, A. C. (2018). The structure and significance of anhydrite-bearing vein arrays, Lienetz orebody, Lihir Gold Deposit, Papua New Guinea. Economic Geology, 113(1), 237–270. https://doi.org/10.5382/econgeo.2018.4550
  • Tera, F., & Wasserburg, G. J. (1972). U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14(3), 281–304. https://doi.org/10.1016/0012-821X(72)90128-8
  • Terada, K., Osaki, S., Ishihara, S., & Kiba, T. (1971). Distribution of rhenium in molybdenites from Japan. Geochemical Journal, 4(3), 123–141. https://doi.org/10.2343/geochemj.4.123
  • Thompson, T. B. (1993). Hydrothermal breccias. Special Publication—Geological Society of Nevada, 19, 4.
  • Wells, T. J., Meffre, S., Cooke, D. R., Steadman, J. A., & Hoye, J. L. (2020). Porphyry fertility in the Northparkes district: Indicators from whole-rock geochemistry. Australian Journal of Earth Sciences, 67(5), 717–738. https://doi.org/10.1080/08120099.2020.1715477
  • Widmann, P., Davies, J. H. F. L., & Schaltegger, U. (2019). Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and U–Pb age. Chemical Geology, 511, 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026
  • Wilson, A. J., Cooke, D. R., & Harper, B. L. (2003). The Ridgeway gold–copper deposit; a high-grade alkalic porphyry deposit in the Lachlan Fold Belt, New South Wales, Australia. Economic Geology, 98(8), 1637–1666. https://doi.org/10.2113/gsecongeo.98.8.1637
  • Wilson, A. J., Cooke, D. R., Stein, H. J., Fanning, C. M., Holliday, J. R., & Tedder, I. J. (2007). U–Pb and Re–Os geochronologic evidence for two alkalic porphyry ore-forming events in the Cadia District, New South Wales, Australia. Economic Geology, 102(1), 3–26. https://doi.org/10.2113/gsecongeo.102.1.3
  • Zhang, Q., Buckman, S., Bennett, V. C., & Nutman, A. (2019). Inception and early evolution of the Ordovician Macquarie Arc of Eastern Gondwana margin: Zircon U–Pb–Hf evidence from the Molong Volcanic Belt, Lachlan Orogen. Lithos, 326–327(January), 513–528. https://doi.org/10.1016/j.lithos.2019.01.008
  • Zukowski, W., Cooke, D. R., Deyell, C. L., McInnes, P., & Simpson, K. (2014). Genesis and exploration implications of epithermal gold mineralization and porphyry-style alteration at the Endeavour 41 prospect, Cowal District, New South Wales, Australia. Economic Geology, 109(4), 1079–1115. https://doi.org/10.2113/econgeo.109.4.1079
  • Zukowski, W. (2010). Geology and mineralisation of the Endeavour 41 Gold Deposit [unpublished PhD thesis]. Cowal District, NSW, Australia CODES, University of Tasmania.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.