Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 69, 2022 - Issue 7
110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geochemical and paleoenvironmental characteristics of upper Neoproterozoic ore-hosting black shales in the Bafq metallogenic zone, Central Iran

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1048-1057 | Received 11 Nov 2021, Accepted 25 Apr 2022, Published online: 23 May 2022

References

  • Alavi, M. (1991). Tectonic map of the Middle East, scale 1:5,000,000. Geological Survey of Iran.
  • Algeo, T. J., & Maynard, J. B. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206(3–4), 289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009
  • Ansdell, K. M., Nesbitt, B. E., & Longstaffe, F. J. (1989). A fluid inclusion and stable-isotope study of the Tom Ba–Pb–Zn deposit, Yukon Territory. Economic Geology, 84(4), 841–856. https://doi.org/10.2113/gsecongeo.84.4.841
  • Bhatia, M. R., & Crook, K. A. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193. https://doi.org/10.1007/BF00375292
  • Condie, K. C., Noll, P. D., Jr,., & Conway, C. M. (1992). Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sedimentary Geology, 77(1–2), 51–76. https://doi.org/10.1016/0037-0738(92)90103-X
  • Cullers, R. L., & Podkovyrov, V. N. (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117(3–4), 157–183. https://doi.org/10.1016/S0301-9268(02)00079-7
  • Daliran, F., Stosch, H. G., & Williams, P. (2008). Lower Cambrian iron oxide–apatite–REE (U) deposits of the Bafq District, East-Central Iran. In L. Corriveau & H. Mumin (Eds.), Exploration for iron oxide copper–gold deposits: Canada and Global Analogues (pp. 143–155). Geological Survey of Canada, Short Course Notes.
  • Emsbo, P., Seal, R. R., Breit, G. N., Diehl, S. F., & Shah, A. K. (2016). Sedimentary exhalative (SEDEX) zinc–lead–silver deposit model (Scientific Investigations Report 2010-5070-N, p. 58). U.S. Geological Survey.
  • Floyd, P. A., Kelling, G., Gökçen, S. L., & Gökçen, N. (1991). Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chemical Geology, 89(3–4), 263–280. https://doi.org/10.1016/0009-2541(91)90020-R
  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4), 531–542. https://doi.org/10.1144/gsjgs.144.4.0531
  • Foerster, H., & Jafarzadeh, A. (1994). The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field. Economic Geology, 89(8), 1697–1721. https://doi.org/10.2113/gsecongeo.89.8.1697
  • Garver, J. I., & Scott, T. J. (1995). Trace elements in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Cordillera. Geological Society of America Bulletin, 107(4), 440–453.%281995%29107%3C0440%3ATEISAI%3E2.3.CO%3B2 https://doi.org/10.1130/0016-7606
  • Ghorbani, M. (2013). Economic geology of Iran (Vol. 581). Springer.
  • Gibbs, A. (1976). Geology and genesis of the Bafq lead–zinc deposit. Mines and Metals B, 205–220.
  • Goodfellow, W. D. (1993). Geology and genesis of stratiform sediment-hosted (SEDEX) zinc–lead–silver sulphide deposits. In R. V. Kirkham, W. D. Sinclair, R. I. Thorpe, & J. M. Duke (Eds.), Mineral deposit modelling (pp. 201–252). Geological Association of Canada Special Paper. 40.
  • Hamdi, B. (1995). Precambrian and Cambrian sedimentary rocks of Iran. Treatise on the Geology of Iran, Ministry of Mines and Metals.
  • Hamdi, B., & Zhiwen, J. (1992). Paleozoic fossils from the Morad and Rizu series in Central Iran. Geological Science, Geological Survey of Iran, 1(4), 26–35.
  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1–3), 65–82. https://doi.org/10.1016/0009-2541(92)90031-Y
  • Hoffman, D. L., Algeo, T. J., Maynard, J. B., Joachimski, M. M., Hower, J. C., & Jaminski, J. (1998). Regional and stratigraphic variation in bottomwater anoxia in offshore core shales of Upper Pennsylvanian cyclothems from the Eastern Midcontinent Shelf (Kansas), USA. Shales and Mudstones, 1, 243–269.
  • Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M., & Grove, M. (2008). Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451(1–4), 97–122. https://doi.org/10.1016/j.tecto.2007.11.063
  • Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D., & Koons, P. O. (2003). Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 67(1), 29–46. https://doi.org/10.1016/S0016-7037(02)01053-0
  • Johnson, S. C., Large, R. R., Coveney, R. M., Kelley, K. D., Slack, J. F., Steadman, J. A., Gregory, D. D., Sack, P. J., & Meffre, S. (2017). Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation. Mineralium Deposita, 52(6), 791–798. https://doi.org/10.1007/s00126-017-0735-7
  • Jones, B., & Manning, D. A. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129. https://doi.org/10.1016/0009-2541(94)90085-X
  • Kimura, H., & Watanabe, Y. (2001). Oceanic anoxia at the Precambrian–Cambrian boundary. Geology, 29(11), 995–998. https://doi.org/10.1130/0091-7613(2001)029 < 0995:OAATPC>2.0.CO;2
  • Lasemi, Y. (2001). Facies analysis, depositional environments and sequance stratigraphy of the upper Precambrian and Paleozoic rocks of Iran (p. 180). Geological Survey of Iran. (In Persian)
  • Leach, D. L., Marsh, E., Emsbo, P., Rombach, C. S., Kelley, K. D., & Anthony, M. (2004). Nature of hydrothermal fluids at the shale-hosted Red Dog Zn–Pb–Ag deposits, Brooks Range, Alaska. Economic Geology, 99(7), 1449–1480. https://doi.org/10.2113/gsecongeo.99.7.1449
  • Martin, D. (2004). Qualitative, quantitative and microtextural powder X-ray diffraction analysis. http://www.xpowder.com.
  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In M. J. Johnsson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (Vol. 284, pp. 21–21). Special Papers-Geological Society of America. https://doi.org/10.1130/SPE284-p21
  • Nesbitt, H., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0
  • Nogole-Sadat, M. A. A. (1993). Seismotectonic Map of Iran, scale, 1:1,000,000; Treatise on the Geology of Iran. Geological Survey of Iran.
  • Rajabi, A., Canet, C., Rastad, E., & Alfonso, P. (2015). Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the Early Cambrian Zarigan–Chahmir Basin, Central Iran. Ore Geology Reviews, 64, 328–353. https://doi.org/10.1016/j.oregeorev.2014.07.013
  • Rajabi, A., Rastad, E., Alfonso, P., & Canet, C. (2012). Geology, ore facies and sulphur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam Block, Central Iran. International Geology Review, 54(14), 1635–1648. https://doi.org/10.1080/00206814.2012.659106
  • Ramezani, J., & Tucker, R. D. (2003). The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7), 622–665. https://doi.org/10.2475/ajs.303.7.622
  • Rimmer, S. M. (2004). Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206(3–4), 373–391. https://doi.org/10.1016/j.chemgeo.2003.12.029
  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1–2), 119–139. https://doi.org/10.1016/0009-2541(88)90010-1
  • Sáez, R., Moreno, C., González, F., & Almodóvar, G. R. (2011). Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Mineralium Deposita, 46(5–6), 585–614. https://doi.org/10.1007/s00126-010-0311-x
  • Scotese, C. R. (2009). Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. In J. Craig, J. Thurow, B. Thusu, A. Whitham & Y. Abutarruma (Eds.), Global Neoproterozoic petroleum systems: The emerging potential in North Africa (Vol. 326, pp. 67–83). Geological Society, London, Special Publications. https://doi.org/10.1144/SP326.4
  • Stöcklin, J. (1986). The Vendian–Lower Cambrian salt basins of Iran, Oman and Pakistan: Stratigraphy, correlations, paleogeography. In P. Bordet, P. Le Fort, M. Colchen & C. Montenat (Eds.), Evolution des domaines orogéniques d’Asie méridionale (de la Turquie à l’Indonesie) (pp. 329–345). Fondation scientifique de la géologie.
  • Stosch, H., Romer, R. L., Daliran, F., & Rhede, D. (2011). Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Mineralium Deposita, 46(1), 9–21. https://doi.org/10.1007/s00126-010-0309-4
  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3), 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D
  • Talbot, C. J., & Alavi, M. (1996). The past of a future syntaxis across the Zagros. In G. I. Alsop, D. J. Blundell & I. Davison (Eds.), Salt tectonics (pp. 89–109). Geological Society, London, Special Publications. 100. https://doi.org/10.1144/GSL.SP.1996.100.01.08
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications.
  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
  • Vaziri, S. H., & Laflamme, M. (2018). Lithostratigraphy and sedimentary environment of the Precambrian Kushk Series of central Iran. Canadian Journal of Earth Sciences, 55(11), 1284–1296. https://doi.org/10.1139/cjes-2017-0234
  • Vaziri, S. H., Majidifard, M. R., & Laflamme, M. (2018). Diverse assemblage of Ediacaran fossils from central Iran. Scientific Reports, 8(1), 1–7. https://doi.org/10.1038/s41598-018-23442-y
  • Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12. https://doi.org/10.1016/j.sedgeo.2015.11.011
  • Vickers-Rich, P., Soleimani, S., Farjandi, F., Zand, M., Linnemann, U., Hofmann, M., Wilson, S. A., Cas, R., & Rich, T. H. (2018). A preliminary report on new Ediacaran fossils from Iran. Alcheringa: An Australasian Journal of Palaeontology, 42(2), 230–243. https://doi.org/10.1080/03115518.2017.1384061
  • Wilkinson, J. J. (2014). Sediment-hosted zinc–lead mineralization: Processes and perspectives. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry, 2nd edn. Geochemistry of mineral deposits (Vol. 13, pp. 219–250). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01109-8
  • Yaghubpur, A., & Mehrabi, B. (1997). Kushk zinc–lead deposit, a typical black-shale-hosted deposit in Yazd state, Iran. Journal of Sciences Islamic Republic of Iran, 8, 117–125.
  • Zand, M. M. (2013). Structural and ore controls based on fluid inclusion studies, and mineral exploration at Keel–Koushk area in Bafgh metallogenic subzone Yazd province, Central Iran [Unpublished M.Sc thesis]. Islamic Azad University, Science and Research Branch, Faculty of Basic Sciences, Department of Geology. (In Farsi)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.