Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 69, 2022 - Issue 8
224
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crystallographic preferred orientation of quartz deformed at granulite conditions: the Kalinjala Shear Zone, Port Neill, South Australia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1119-1131 | Received 03 Feb 2022, Accepted 30 Apr 2022, Published online: 15 Jun 2022

References

  • Bouchez, J. L. (1978). Preferred orientations of quartz < a > axes in some tectonites: Kinematic inferences. Tectonophysics, 49(1–2), T25–T30. https://doi.org/10.1016/0040-1951(78)90094-X
  • Bunge, H. J., Siegesmund, S., Skrotzki, W., & Weber, K. (1994). Textures of geological materials. DGM Informationsgesellschaft mbH.
  • Burg, J-P., & Laurent, P. (1978). Strain analysis of a shear zone in a granodiorite. Tectonophysics, 47(1–2), 15–42. https://doi.org/10.1016/0040-1951(78)90149-X.
  • Curtis, S., & Thiel, S. (2019). Identifying lithospheric boundaries using magnetotellurics and Nd isotope geochemistry: An example from the Gawler Craton, Australia. Precambrian Research, 320, 403–423. https://doi.org/10.1016/j.precamres.2018.11.013.
  • Drexel, J. F., Preiss, W. V., & Parker, A. J. (1993). The geology of South Australia: Volume 1, The Precambrian. Geological Survey of South Australia.
  • Dutch, R. A., & Hand, M. (2009). EPMA monazite constraints on the timing of deformation and metamorphism in the southern Kalinjala Shear Zone, Gawler Craton. MESA Journal, 53, 41–46.
  • Dutch, R. A., Hand, M., & Kelsey, D. E. (2010). Unravelling the tectonothermal evolution of reworked Archean granulite facies metapelites using in situ geochronology: An example from the Gawler Craton, Australia. Journal of Metamorphic Geology, 28(3), 293–316. https://doi.org/10.1111/j.1525-1314.2010.00867
  • Faleiros, F. M., Moraes, R. D., Pavan, M., & Campanha, G. A. C. (2016). A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer. Tectonophysics, 671, 173–182. https://doi.org/10.1016/j.tecto.2016.01.014.
  • Hand, M., Reid, A., & Jagodzinski, E. (2007). Tectonic framework and evolution of the Gawler Craton, South Australia. Economic Geology, 102(8), 1377–1395. https://doi.org/10.2113/jgsecongeo.102.8.1377
  • Heilbronner, R., & Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In S. de Meer, M. R. Drury, J. H. P. de Bresser & G. M. Pennock (Eds.), Deformation mechanisms, rheology and tectonics: current status and future perspectives (vol. 200, pp. 191–218). Geological Society of London Special Publication.
  • Heilbronner, R., & Tullis, J. (2006). Evolution of c-axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. Journal of Geophysical Research, 111(B10), B10202. https://doi.org/10.1029/2005JB004194.
  • Hobbs, B. E. (1981). The influence of metamorphic environment upon the deformation of minerals. Tectonophysics, 78(1–4), 335–383. https://doi.org/10.1016/0040-1951(81)90020-2.
  • Hunter, N. J. R., Weinberg, R. F., Wilson, C. J. L., & Law, R. D. (2018). A new technique for quantifying symmetry and opening angles in quartz c-axis pole figures: Implications for interpreting the kinematic and thermal properties of rocks. Journal of Structural Geology, 112(1), 1–6. https://doi.org/10.1016/j.jsg.2018.04.006.
  • Hunter, N. J. R., Weinberg, R. F., Wilson, C. J. L., Luzin, V., & Misra, S. (2019). Quartz deformation across interlayered monomineralic and polymineralic rocks: A comparative analysis. Journal of Structural Geology, 119, 118–134. https://doi.org/10.1016/j.jsg.2018.12.005.
  • Hunter, N. J. R., Wilson, C. J. L., & Luzin, V. (2017). Comparison of quartz crystallographic preferred orientations identified with optical fabric analysis, electron backscatter and neutron diffraction techniques. Journal of Microscopy, 265(2), 169–184. https://doi.org/10.1111/jmi.12472.
  • Keller, L. M., & Stipp, M. (2011). The single-slip hypothesis revisited: Crystal-preferred orientations of sheared quartz aggregates with increasing strain in nature and numerical simulation. Journal of Structural Geology, 33(10), 1491–1500. https://doi.org/10.1016/j.jsg.2011.07.008.
  • Kilian, R., Heilbronner, R., & Stünitz, H. (2011). Quartz microstructures and crystallographic preferred orientation: Which shear sense do they indicate? Journal of Structural Geology, 33(10), 1446–1466. https://doi.org/10.1016/j.jsg.2011.08.005.
  • Kronenberg, A. K. (1994). Hydrogen speciation and chemical weakening of quartz. In P. J. Heaney, C. T. Prewitt & G. V. Gibbs (Eds.), Reviews in Mineralogy (pp. 123–176). Mineralogical Society of America.
  • Kruhl, J. H. (2003). Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer. Journal of Metamorphic Geology, 14(5), 581–589. https://doi.org/10.1046/j.1525-1314.1996.00413.x.
  • Larson, K., Cottle, J., Lederer, G., & Rai, S. M. (2017). Defining shear zone boundaries using fabric intensity gradients: An example from the east-central Nepal Himalaya. Geosphere, 13(3), 771–781. https://doi.org/10.1130/GES01373.1.
  • Law, R. D. (1987). Heterogeneous deformation and quartz crystallographic fabric transitions: Natural samples from the Stack of Glencoul, northern Assynt. Journal of Structural Geology, 9(7), 819–833. https://doi.org/10.1016/0191-8141(87)90083-6.
  • Law, R. D. (2014). Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review. Journal of Structural Geology, 66, 129–161. https://doi.org/10.1016/j.jsg.2014.05.023.
  • Linker, M. F., Kirby, S. H., Ord, A., & Christie, J. M. (1984). Effects of compression direction on the plasticity and rheology of hydrolytically weakened synthetic quartz crystals at atmospheric pressure. Journal of Geophysical Research: Solid Earth, 89(B6), 4241–4255. https://doi.org/10.1029/JB089iB06p04241.
  • Lister, G. S., & Hobbs, B. E. (1980). The simulation of fabric development during plastic deformation and its application to quartzite: The influence of deformation history. Journal of Structural Geology, 2(3), 355–370. https://doi.org/10.1016/0191-8141(80)90023-1.
  • Mainprice, D., Bouchez, J. L., Blumenfeld, P., & Tubia, J. M. (1986). Dominant c slip in naturally deformed quartz: Implications for dramatic plastic softening at high temperature. Geology, 14(10), 819–822. https://doi.org/10.1130/0091-7613(1986)14<819:DCSIND>2.0.CO;2.
  • Mancktelow, N. S., & Pennacchioni, G. (2004). The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. Journal of Structural Geology, 26(1), 47–69. https://doi.org/10.1016/S0191-8141(03)00081-6.
  • Parker, A. J. (1980). The Kalinjala mylonite zone, eastern Eyre Peninsula. Geological Survey of South Australia, Quarterly Geological Notes, 76, 6–11.
  • Parker, A. J. (1993). Palaeoproterozoic. In J. F. Drexel, W. V. Preiss & A. J. Parker (Eds.), The geology of South Australia: Volume 1, The Precambrian (pp. 51–105). Geological Survey of South Australia.
  • Paterson, M. S. (1989). The interaction of water with quartz and its influence in dislocation flow – an overview. In S. I. Karato & M. Toriumi (Eds.), Rheology of solids and of the Earth (pp. 107–142). Oxford University Press.
  • Paterson, M. S., & Luan, F. C. (1990). Quartzite rheology under geological conditions. In R. J. Knipe & E. H. Rutter (Eds.), Deformation mechanisms, rheology and tectonics (vol. 54, pp. 299–307). Geological Society.
  • Pauli, C., Schmid, S. M., & Heilbronner, R. P. (1996). Fabric domains in quartz mylonites: Localized three dimensional analysis of microstructure and texture. Journal of Structural Geology, 18(10), 1183–1203. https://doi.org/10.1016/S0191-8141(96)00017-X.
  • Peternell, M., Hasalová, P., Wilson, C. J. L., Piazolo, S., & Schulmann, K. (2010). Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and Fabric Analyser techniques. Journal of Structural Geology, 32(6), 803–817. https://doi.org/10.1016/j.jsg.2010.05.007.
  • Peternell, M., Kohlmann, F., Wilson, C. J. L., Seiler, C., & Gleadow, A. J. W. (2009). A new approach to crystallographic orientation measurement for apatite fission track analysis: Effects of crystal morphology and implications for automation. Chemical Geology, 265(3–4), 527–539. https://doi.org/10.1016/j.chemgeo.2009.05.021.
  • Price, G. P. (1985). Preferred orientations in Quartzites. In W-R. Wenk (Ed.), Preferred orientation in deformed metals and rocks: An introduction to modern texture analysis (pp. 385–406). Academic Press.
  • Schmid, S. M., & Casey, M. (1986). Complete fabric analysis of some commonly observed quartz c-axis patterns. In B. E. Hobbs & H. C. Heard (Eds.), Mineral and rock deformation: Laboratory studies (vol. 36, pp. 263–286). Geophysical Monograph.
  • Starnes, J. K., Long, S. P., Gordon, S. M., Zhang, J., & Soignard, E. (2020). Using quartz fabric intensity parameters to delineate strain patterns across the Himalayan Main Central thrust. Journal of Structural Geology, 131, 103941. https://doi.org/10.1016/j.jsg.2019.103941.
  • Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002). The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology, 24(12), 1861–1884. https://doi.org/10.1016/S0191-8141(02)00035-4.
  • Stipp, M., Tullis, J., & Behrens, H. (2006). Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer. Journal of Geophysical Research, 111(B4), 201–220. https://doi.org/10.1029/2005JB003852.
  • Tong, L., Wilson, C. J. L., & Vassallo, J. J. (2004). Metamorphic evolution and reworking of the Sleaford complex metapelites in the southern Eyre Peninsula, South Australia. Australian Journal of Earth Sciences, 51(4), 571–589. https://doi.org/10.1111/j.1400-0952.2004.01076.x.
  • Tullis, J., Christie, J. M., & Griggs, D. T. (1973). Microstructures and preferred orientations of experimentally deformed quartzites. Geological Society of America Bulletin, 84(1), 297–314. https://doi.org/10.1130/0016-7606(1973)84%3C297:MAPOOE%3E2.0.CO;2.
  • Tullis, J., & Yund, R. A. (1989). Hydrolytic weakening of quartz aggregates—the effects of water and pressure on recovery. Geophysical Research Letters, 16(11), 1343–1346. https://doi.org/10.1029/GL016i011p01343.
  • Vassallo, J. J., & Wilson, C. J. L. (2002). Palaeproterozoic regional-scale non-coaxial deformation: An example from eastern Eyre Peninsula, South Australia. Journal of Structural Geology, 24(1), 1–24. https://doi.org/10.1016/S0191-8141(01)00043-8.
  • Wenk, H. R. (2006). Neutron diffraction texture analysis. Reviews in Mineralogy and Geochemistry, 63(1), 399–426. https://doi.org/10.2138/rmg.2006.63.15.
  • Wilson, C. J. L. (2021). Tectonic history related to the southern section of the Kalinjala Shear Zone, Eyre Peninsula, South Australia and relationship to Terre Adélie Land. Gondwana Research, 98, 17–45. https://doi.org/10.1016/j.gr.2021.05.018.
  • Wilson, C. J. L., & Hunter, N. J. R. (2022). Shear zones in the southern Eyre Peninsula, South Australia: Quartz c-axis fabrics in granulite facies mylonitic orthogneisses and relationship to mafic dykes. Tectonophysics, 827, 229277. https://doi.org/10.1016/j.tecto.2022.229277.
  • Wilson, C. J. L., & Peternell, M. (2011). Evaluating ice fabrics using fabric analyser techniques in Sørsdal Glacier, East Antarctica. Journal of Glaciology, 57(205), 881–894. https://doi.org/10.3189/002214311798043744.
  • Wilson, C. J. L., Russell-Head, D. S., Kunze, K., & Viola, G. (2007). The analysis of quartz c-axis fabrics using a modified optical microscope. Journal of Microscopy, 227(Pt 1), 30–41. https://doi.org/10.1111/j.1365-2818.2007.01784.x.
  • Wilson, C. J. L., Russell-Head, D. S., & Sim, H. M. (2003). The application of an automated fabric analyser system to the textural evolution of folded ice layers in shear zones. Annals of Glaciology, 37, 7–17. https://doi.org/10.3189/172756403781815401.
  • Wilson, C. J. L., Stewart, J. R., & Betts, P. G. (2022). Strain localisation and transcurrent reactivation in the granulite facies Kalinjala Shear Zone at Port Neill, South Australia. Australian Journal of Earth Sciences, 69(8). https://doi.org/10.1080/08120099.2022.2076739.
  • Wilson, C. J. L., Vassallo, J. J., & Hoek, J. D. (2020). Rheological behaviour of mafic dykes deformed in a granite host, Wanna, Eyre Peninsula, South Australia. Journal of Structural Geology, 140, 104164. https://doi.org/10.1016/j.jsg.2020.104164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.