Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 70, 2023 - Issue 3
104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shale gas potential of Ordovician marine Pingliang shale and Carboniferous–Permian transitional Taiyuan-Shanxi shales in the Ordos Basin, China

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 411-422 | Received 07 Oct 2022, Accepted 19 Dec 2022, Published online: 05 Feb 2023

References

  • Bowker, K. A. (2007). Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533. https://doi.org/10.1306/06190606018
  • Cao, Q. Y. (1985). Identification of microcomponents and types of kerogen under transmitted light. Petroleum Exploration and Development, 5, 14–23.
  • Chalmers, G. R. L., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia, Canada. International Journal Coal Geology, 70, 223–239. https://doi.org/10.1016/j.coal.2006.05.001
  • Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units characterization of gas shale pore systems. AAPG Bulletin, 96(6), 1099–1119. https://doi.org/10.1306/10171111052
  • Chen, Q., Zhang, J., Tang, X., Dang, W., Li, Z., Liu, C., & Zhang, X. (2016). Pore structure characterization of the Lower Permian marine–continental transitional black shale in the Southern North China Basin. Energy & Fuels, 30(12), 10092–10105. https://doi.org/10.1021/acs.energyfuels.6b01475
  • Cheng, A. L., & Huang, W. L. (2004). Selective adsorption of hydrocarbon gases on clays and organic matter. Organic Geochemistry, 35(4), 413–423. https://doi.org/10.1016/j.orggeochem.2004.01.007
  • Curtis, J. B. (2002). Fractured shale gas systems. AAPG Bulletin, 86(11), 1921–1938. https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865D
  • Dang, W., Zhang, J. C., Tang, X., Chen, Q., Han, S. B., Li, Z. M., Du, X. R., Wei, X. L., Zhang, M. Q., Liu, J., Peng, J. L., & Huang, Z. L. (2016). Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China: Characterization of organic geochemistry. Journal of Natural Gas Science and Engineering, 28, 639–650. https://doi.org/10.1016/j.jngse.2015.12.035
  • Dong, D. Z., Zou, C. N., Li, J. Z., Wang, S. J., Li, X. J., Wang, Y. M., Li, D. H., & Huang, J. L. (2011). Resource potential, exploration and development prospect of shale gas in the whole world. Geological Bulletin of China, 30(Z1), 324–336. https://doi.org/10.3969/j.issn.1671-2552.2011.02.018
  • Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications, 1ère partie. Revue de L’Institut Français du Pétrole, 40(5), 563–579. https://doi.org/10.2516/ogst:1985035
  • Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2014). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51. https://doi.org/10.1016/j.coal.2013.06.010
  • Guo, S. B., & Zhao, K. Y. (2014). Gas-bearing influential factors and estimation of shale reservoirs in Upper Paleozoic, Ordos Basin. Petroleum Geology & Experiment, 36(6), 678–691. https://doi.org/10.11781/sysydz201406678
  • Guo, T. L., & Zhang, H. R. (2014). Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Petroleum Exploration and Development, 6, 28–36. https://doi.org/10.1016/S1876-3804(14)60003-3
  • Guo, X. S., Hu, D. F., Liu, R. B., Wei, X. F., & Wei, F. B. (2018). Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin. Natural Gas Industry, 38(10), 11–18. https://doi.org/10.3787/j.issn.1000-0976.2018.10.002
  • Gupta, N., Rai, C. S., & Sondergeld, C. H. (2013). Petrophysical characterization of the Woodford Shale. Petrophysics, 54(4), 368–382.
  • Heller, R., & Zoback, M. (2014). Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources, 8, 14–24. https://doi.org/10.1016/j.juogr.2014.06.001
  • Hill, D. G., & Nelson, C. R. (2000). Gas productive fractured shales: An overview and update. Gas Tips, 6(3), 4–13.
  • Hu, T., Pang, X. Q., Xu, T. W., Li, C. R., Jiang, S., Wang, Q. F., Chen, Y. Y., Zhang, H. A., Huang, C., Gong, S. Y., & Gao, Z. C. (2022). Identifying the key source rocks in heterogeneous saline lacustrine shales: Paleogene shales in the Dongpu depression, Bohai Bay Basin, eastern China. AAPG Bulletin, 106(6), 1325–1356. https://doi.org/10.1306/01202218109
  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499. https://doi.org/10.1306/12190606068
  • Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545. https://doi.org/10.1016/j.apgeochem.2012.08.027
  • Ken, S., Kunio, K., & Kazuki, O. (2012). Kerogen morphology and geochemistry at the Permian–Triassic transition in the Meishan section, South China: Implication for paleoenvironmental variation. Journal of Asian Earth Sciences, 54–55, 78–90. https://doi.org/10.1016/j.jseaes.2012.04.004
  • Kumar, V., Sondergeld, C., & Rai, C. S. (2015). Effect of mineralogy and organic matter on mechanical properties of shale. Interpretation, 3(3), SV9–SV15. https://doi.org/10.1190/INT-2014-0238.1
  • Li, H. H., & Zhai, M. G. (1996). Tectonic division of high-grade metamorphic terrain and late Archean tectonic evolution in north-central part of North China Craton. Acta Petrologica Sinica, 12(2), 179–192. http://oldversion.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19960227&flag=1
  • Li, P., Zhang, J. C., Tang, X., Huo, Z. P., Li, Z., Luo, K. Y., & Li, Z. M. (2021a). Assessment of shale gas potential of the lower Permian transitional Shanxi-Taiyuan shales in the southern North China Basin. Australian Journal of Earth Sciences, 68(2), 262–284. https://doi.org/10.1080/08120099.2020.1762737
  • Li, P., Zhang, J. C., Rezaee, R., Dang, W., Tang, X., Nie, H. K., & Chen, S. J. (2021b). Effect of adsorbed moisture on the pore size distribution of transitional shales: Insights from clay swelling and lithofacies difference. Applied Clay Science, 201, 105926. https://doi.org/10.1016/j.clay.2020.105926
  • Li, Y., Liu, H., Zhang, L., Lu, Z., Li, Q., & Huang, Y. (2013). Lower limits of evaluation parameters for the lower Paleozoic Longmaxi shale gas in southern Sichuan Province. Science China Earth Sciences, 56(5), 710–717. https://doi.org/10.1007/s11430-013-4579-4
  • Loucks, R. G., & Ruppel, S. C. (2007). Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4), 579–601. https://doi.org/10.1306/11020606059
  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098. https://doi.org/10.1306/08171111061
  • Nie, H. K., & Zhang, J. C. (2012). Shale gas accumulation conditions and gas content calculation: A case study of Sichuan Basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 86(2), 349–361. http://CNKI:11-1951/P.20120113.0857.004
  • Nie, H. K., & Jin, Z. J. (2016). Source rock and cap rock controls on the Upper Ordovician Wufeng Gormation–Lower Silurian Longmaxi Formation shale gas accumulation in the Sichuan basin and its peripheral areas. Acta Geologica Sinica, 90, 1059–1060. https://doi.org/10.1111/1755-6724.12752
  • Nie, H. K., Jin, Z. J., Sun, C. X., He, Z. L., Liu, G. X., & Liu, Q. Y. (2019). Organic matter types of the Wufeng and Longmaxi formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores. Energy & Fuels, 33, 8076–8100. https://doi.org/10.1021/acs.energyfuels.9b01453
  • Nie, H. K., Tang, X., & Bian, R. K. (2009). Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China. Acta Petrolei Sinica, 30, 484–491. https://doi.org/10.7623/syxb200904002
  • Sone, H., & Zoback, M. D. (2013). Mechanical properties of shale-gas reservoir rocks—Part 1: Static and dynamic elastic properties and anisotropy. Geophysics, 78(5), 381–392. https://doi.org/10.1190/geo2013-0050.1
  • Sun, Z., Xie, Q., & Yang, J. (1989). Ordos Basin—a typical example of an unstable cratonic interior superimposed basin. In X. Zhu & W. Xu (Eds.), Chinese Sedimentary Basins (pp. 148–168). Elsevier.
  • Tang, X., Zhang, J. C., Wang, X. Z., Yu, B. S., Ding, W. L., Xiong, J. Y., Yang, Y. T., Wang, L., & Yang, C. (2014). Shale characteristics in the southeastern Ordos Basin, China: Implications for hydrocarbon accumulation conditions and the potential of continental shales. International Journal of Coal Geology, 128–129, 32–46. https://doi.org/10.1016/j.coal.2014.03.005
  • Thomas, J. A., & Maynard, J. B. (2008). Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments. Geosphere, 4(5), 872–887. https://doi.org/10.1130/GES00174.1
  • Wang, X. Z., Gao, S. L., & Gao, C. (2014a). Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China. Petroleum Exploration and Development, 41(3), 294–304. https://doi.org/10.11698/PED.2014.03.04
  • Wang, G., Ju, Y., Bao, Y., Yan, Z. F., Li, X. S., Bu, H. L., & Li, Q. G. (2014b). Coal-bearing organic shale geological evaluation of Huainan-Huaibei Coalfield, China. Energy & Fuels, 28, 5031–5042. https://doi.org/10.1021/ef501285x
  • Xiao, Z., Tan, J., Ju, Y., Hilton, J., Yang, R. F., Zhou, P., Huang, Y. R., Ning, B. W., & Liu, J. S. (2018). Natural gas potential of Carboniferous and Permian transitional shales in central Hunan, South China. Journal of Natural Gas Science and Engineering, 55, 520–533. https://doi.org/10.1016/j.jngse.2018.05.024
  • Xu, L. M., Zhou, L. F., Zhang, Y. K., & Dang, B. (2006). Characteristics and tectonic setting of tectono-stress field of Ordos Basin. Geotectonica et Metallogenia, 30(4), 455–462. https://doi.org/10.16539/j.ddgzyckx.2006.04.007
  • Yan, D. Y., Huang, W. H., & Li, A. (2013). Preliminary analysis of marine–continental transitional shale gas accumulation conditions and favorable areas in the upper Paleozoic Ordos Basin. Journal of Northeast Petroleum University, 37(5), 1–9. http://xuebao.nepu.edu.cn/info/1274/5509.htm
  • Yan, D. Y., Huang, W. H., & Zhang, J. C. (2015). Characteristics of marine–continental transitional organic rich shale in the Ordos Basin and its shale gas significance. Earth Science Frontiers, 22(6), 197–206. https://doi.org/10.13745/j.esf.2015.06.015
  • Yang, F., Ning, Z. F., Zhang, R., Zhao, H. W., & Kross, B. M. (2015). Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China. International Journal of Coal Geology, 146, 104–117. https://doi.org/10.1016/j.coal.2015.05.009
  • Yang, W., Li, Y., Gao, R., & Guo, Q. (1981). The type and evolution of continental source materials in the Songliao Basin. Science China, 8, 1000–1008. http://www.cnki.com.cn/Article/CJFDTotal-JBXG198203008.htm
  • Zhang, J. C., Jiang, S. L., Tang, X., Zhang, P. X., Tang, Y., & Jin, T. Y. (2009). Accumulation types and resources characteristics of shale gas in China. Natural Gas Industry, 29(12), 109–114. https://doi.org/10.3787/j.issn.1000-0976.2009.12.033
  • Zhang, Q., Littke, R., Zieger, L., Shabani, M., Tang, X., & Zhang, J. C. (2019). Ediacaran, Cambrian, Ordovician, Silurian and Permian shales of the Upper Yangtze Platform, South China: Deposition, thermal maturity and shale gas potential. International Journal of Coal Geology, 216, 103281. https://doi.org/10.1016/j.coal.2019.103281
  • Zhang, T. S., Yang, Y., Gong, Q. S., Liang, X., & Wei, X. F. (2014). Characteristics and mechanisms of the micro-pores in the Early Palaeozoic marine shale, southern Sichuan Basin. Acta Geologica Sinica, 88(9), 1728–1740. http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=2012424&flag=1
  • Zou, C. N., Dong, D. Z., Wang, S. J., Li, J. Z., Li, X. J., Wang, Y. M., Li, D. H., & Cheng, K. M. (2010). Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 6, 641–653. https://doi.org/10.1016/S1876-3804(11)60001-3
  • Zou, C. N., Du, J. H., Xu, C. C., Wang, Z. C., Zhang, B. M., Wei, G. Q., Wang, T. S., Yao, G. S., Deng, S. H., Liu, J. J., Zhou, H., Xu, A., Yang, Z., Jiang, H., & Gu, Z. D. (2014). Formation, distribution, resource potential and discovery of the Sinian − Cambrian giant gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3), 306–325. https://doi.org/10.1016/S1876-3804(14)60036-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.