Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 71, 2024 - Issue 4
408
Views
0
CrossRef citations to date
0
Altmetric
Research Article

PT conditions of metamorphic and hydrothermal events at Tick Hill gold deposit, Mount Isa, Queensland, Australia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 538-552 | Received 19 Jun 2023, Accepted 06 Feb 2024, Published online: 17 Mar 2024

References

  • Abu Sharib, A. S. A. A., & Sanislav, I. V. (2013). Polymetamorphism accompanied switching in horizontal shortening during Isan Orogeny: Example from the Eastern Fold Belt, Mount Isa Inlier, Australia. Tectonophysics, 587, 146–167. https://doi.org/10.1016/j.tecto.2012.06.051
  • Anderson, J. L. (1996). Status of thermobarometry in granitic batholiths. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2), 125–138. https://doi.org/10.1017/S0263593300006544
  • Berman, R. (1990). Mixing properties of Ca–Mg–Fe–Mn garnets. American Mineralogist, 75(3-4), 328–344.
  • Betts, P., Armit, R., Stewart, J., Aitken, A., Ailleres, L., Donchak, P., Hutton, L., Withnall, I., & Giles, D. (2016). Australia and Nuna. In Z. X. Li, D. A. D. Evans & J. B. Murphy (Eds.), Supercontinent Cycles Through Earth History (Vol. 424, pp. 47–81). Geological Society of London, Special Publication. https://doi.org/10.1144/SP424.2
  • Blake, D., & Steward, A. (1992). Stratigraphic and tectonic framework, Mount Isa. AGSO Bulletin, 243, 1–11.
  • Blundy, J. D., & Holland, T. J. (1990). Calcic amphibole equilibria and a new amphibole–plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2), 208–224. https://doi.org/10.1007/BF00306444
  • Bourdelle, F., & Cathelineau, M. (2015). Low temperature chlorite geothermometry: A graphical representation based on a T–R2 ± Si diagram. European Journal of Mineralogy, 27(5), 617–626. https://doi.org/10.1127/ejm/2015/0027-2467
  • Cathelineau, M. (1988). Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23(4), 471–485. https://doi.org/10.1180/claymin.1988.023.4.13
  • Cathelineau, M., & Nieva, D. (1985). A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology, 91(3), 235–244. https://doi.org/10.1007/BF00413350
  • Choy, D. K. W. (1994). The geology, structure, petrology, alteration and mineralization of Tick Hill [Unpublished master thesis]. Monash University. 220 p.
  • Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361), 431–435. https://doi.org/10.1180/minmag.1987.051.361.10
  • Ellis, D. J., & Green, D. H. (1979). An experimental study of the effect of Ca upon garnet clinopyroxene Fe–Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71(1), 13–22. https://doi.org/10.1007/BF00371878
  • Essene, E. (1989). The current status of thermobarometry in metamorphic rocks. In J. S. Daly, R. A. Cliff & B. W. D. Yardley (Eds.), Evolution of metamorphic belts (Vol. 43, pp. 1–44). Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1989.043.01.02
  • Essene, E. J. (2009). Thermobarometry gone astray. In A. K. Gupta & S. Dasgupta (Eds.), Physics and chemistry of the earth’s interior, crust, mantle and core (pp. 101–133). Indian National Academy.
  • Essene, E. J., & Peacor, D. R. (1995). Clay mineral thermometry: A critical perspective. Clay Minerals, 43, 728–745. https://doi.org/10.1346/CCMN.1995.0430504
  • Esteban, J. J., Cuevas, J., Tubía, J. M., Liati, A., Seward, D., & Gebauer, D. (2007). Timing and origin of zircon-bearing chlorite schists in the Ronda peridotites (Betic Cordilleras, S Spain). Lithos, 99(1-2), 121–135. https://doi.org/10.1016/j.lithos.2007.06.006
  • Ferry, J. T., & Spear, F. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66(2), 113–117. https://doi.org/10.1007/BF00372150
  • Ganguly, J., & Kennedy, G. C. (1974). The energetics of natural garnet solid solution. Contributions to Mineralogy and Petrology, 48(2), 137–148. https://doi.org/10.1007/BF00418615
  • Gillis, K. M., Muehlenbachs, K., Stewart, M., Karson, J., & Gleeson, T. (2001). Fluid flow patterns in fast-spreading East Pacific Rise crust exposed at Hess Deep. Journal of Geophysical Research: Solid Earth, 106(B11), 26311–26329. https://doi.org/10.1029/2000JB000038
  • Graham, C. M., & Powell, R. (1984). A garnet–hornblende geothermometer: Calibration, testing, and application to the Pelona Schist, Southern California. Journal of Metamorphic Geology, 2(1), 13–31. https://doi.org/10.1111/j.1525-1314.1984.tb00282.x
  • Hodges, K., & Spear, F. S. (1982). Geothermometry, geobarometry and the Al2SiO5 triple point at Mount Moosilauke, New Hampshire. American Mineralogist, 67(11-12), 1118–1134.
  • Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/BF00310910
  • Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., & Vieillard, P. (2009). Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays and Clay Minerals, 57(3), 371–382. https://doi.org/10.1346/CCMN.2009.0570309
  • Jercinovic, M. J., Williams, M. L., & Lane, E. D. (2008). In-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA. Chemical Geology, 254(3-4), 197–215. https://doi.org/10.1016/j.chemgeo.2008.05.016
  • Jowett, E. C. (1991). Fitting iron and magnesium into the hydrothermal chlorite geothermometer [Paper presentation]. GAC/MAC/SEG Joint Annual Meeting (Tront), Abstract, A62. https://doi.org/10.2139/ssrn.3863523
  • Kohn, M. J., & Spear, F. S. (1989). Empirical calibration of geobarometers for the assemblage garnet + plagioclase + quartz. American Mineralogist, 74(1-2), 77–84.
  • Kohn, M. J., & Spear, F. S. (1990). Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. American Mineralogist, 75(1-2), 89–96.
  • Laverne, C., Vanko, D. A., Tararotti, P., & Alt, J. C. (1995). Chemistry and geothermometry of secondary minerals from the deep sheeted dike complex, Hole 504B1. Paper Presented at the Proceedings of the Ocean Drilling Program, Scientific Results.
  • Le, T. X., Dirks, P. H. G. M., Sanislav, I. V., Harris, C., Huizenga, J. M., Cocker, H., & Manestar, G. N. (2022). Quartz oxygen isotopes from Tick Hill Area in Mount Isa Inlier – Indication of a regional fluid overprint. Australian Journal of Earth Sciences, 69(3), 439–452. https://doi.org/10.1080/08120099.2022.1985608
  • Le, T. X., Dirks, P. H. G. M., Sanislav, I. V., Huizenga, J. M., Cocker, H., & Manestar, G. N. (2021a). Geological setting and mineralisation characteristics of the Tick Hill Gold Deposit, Mount Isa Inlier, Queensland, Australia. Ore Geology Reviews, 137, 104288. https://doi.org/10.1016/j.oregeorev.2021.104288
  • Le, T. X., Dirks, P. H. G. M., Sanislav, I. V., Huizenga, J. M., Cocker, H., & Manestar, G. N. (2021b). Geochronological constraints on the geological history and gold mineralisation in the Tick Hill region, Mount Isa Inlier. Precambrian Research, 366, 106422. https://doi.org/10.1016/j.precamres.2021.106422
  • Moura, M. A., Botelho, N. F., Olivo, G. R., & Kyser, T. K. (2006). Granite-related Paleoproterozoic, Serrinha gold deposit, southern Amazonia, Brazil: Hydrothermal alteration, fluid inclusion and stable isotope constraints on genesis and evolution. Economic Geology, 101(3), 585–605. https://doi.org/10.2113/gsecongeo.101.3.585
  • Newton, R. C., Charlu, T. V., & Kleppa, O. J. (1977). Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO–MgO–Al2O3–SiO2. Geochimica et Cosmochimica Acta, 41(3), 369–377. https://doi.org/10.1016/0016-7037(77)90264-2
  • Oliver, N. (1995). Hydrothermal history of the Mary Kathleen Fold Belt, Mount Isa Block, Queensland. Australian Journal of Earth Sciences, 42(3), 267–279. https://doi.org/10.1080/08120099508728201
  • Perchuk, L. (1967). Analysis of thermodynamic conditions of mineral equilibria in amphibole–garnet rocks. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 3, 57–83.
  • Perchuk, L. (1969). The effect of temperature and pressure on the equilibrium of natural iron–magnesium minerals. International Geology Review, 11(8), 875–901. https://doi.org/10.1080/00206816909475127
  • Perchuk, L. L. (1970). Equilibria of Rock-Forming Minerals. ‘Nauka’ Press. (in Russian)
  • Perchuk, L., & Lavrent’eva, I. (1983). Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In S. K. Saxena (Ed.), Kinetics and equilibrium in mineral reactions. Advances in physical geochemistry (Vol. 3, pp. 199–239). Springer. https://doi.org/10.1007/978-1-4612-5587-1_7
  • Perchuk, L. L., Aranovich, L. Y., Podlesskii, K. K., Lavrant’Eva, I. V., Gerasimov, V. Y., Fed’Kin, V. V., Kitsul, V. I., Karsakov, L. P., & Berdnikov, N. V. (1985). Precambrian granulites of the Aldan shield, eastern Siberia, USSR. Journal of Metamorphic Geology, 3(3), 265–310. https://doi.org/10.1111/j.1525-1314.1985.tb00321.x
  • Poli, S., & Schmidt, M. W. (1992). A comment on “Calcic amphibole equilibria and a new amphibole–plagioclase geothermometer” by J. D. Blundy & T. J. B. Holland. Contributions to Mineralogy and Petrology, 111(2), 273–278. https://doi.org/10.1007/BF00348960
  • Powell, R. (1985). Regression diagnostics and robust regression in geothermometer/geobarometer calibration: The garnet clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3(3), 231–243. https://doi.org/10.1111/j.1525-1314.1985.tb00319.x
  • Ravna, E. K. (2000). Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: An empirical calibration of the garnet–hornblende Fe–Mg geothermometer. Lithos, 53(3-4), 265–277. https://doi.org/10.1016/S0024-4937(00)00029-3
  • Ridolfi, F., Zanetti, A., Renzulli, A., Perugini, D., Holtz, F., & Oberti, R. (2018). AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from electron microprobe analyses. American Mineralogist, 103(7), 1112–1125. https://doi.org/10.2138/am-2018-6385
  • Rutherford, N. F. (2000). Second annual joint venture report to 1st January 2000 for exploration permits for minerals 9083, 11012 & 11013, Burke River Region, Mount Isa-Cloncurry District, North West Queensland, Technical Report No: 2. Queensland Geological Survey. https://geoscience.data.qld.gov.au/report/cr031587
  • Spear, F. S. (1980). NaSi ⇋ CaAl exchange equilibrium between plagioclase and amphibole. Contributions to Mineralogy and Petrology, 72(1), 33–41. https://doi.org/10.1007/BF00375566
  • Spear, F. S. (1981). Amphibole–plagioclase equilibria: An empirical model for the relation albite + tremolite = edenite + 4 quartz. Contributions to Mineralogy and Petrology, 77(4), 355–364. https://doi.org/10.1007/BF00371564
  • Spear, F. S. (1993). Metamorphic phase equilibria and pressure–temperature–time paths (p. 99). Mineralogical Society of America.
  • Spear, F. S., & Kohn, M. J. (1999). Program thermobarometry. GTB software. Provided by the Spear 2021.
  • Spence, J. S., Sanislav, I. V., & Dirks, P. H. (2021). 1750–1710 Ma deformation along the eastern margin of the North Australia Craton. Precambrian Research, 353, 106019. https://doi.org/10.1016/j.precamres.2020.106019
  • Spence, J. S., Sanislav, I. V., & Dirks, P. H. (2022). Evidence for a 1750–1710 Ma orogenic event, the Wonga Orogeny, in the Mount Isa Inlier, Australia: Implications for the tectonic evolution of the North Australian Craton and Nuna Supercontinent. Precambrian Research, 369, 106510. https://doi.org/10.1016/j.precamres.2021.106510
  • Tedman-Jones, C. (2001). Tick Hill core relogging review (Internal report to MIM Exploration Pty Ltd. Misc.2001/010, Record No. 30764). Mount Isa Exploration Office.
  • Thomas, H., & Rana, H. (2020). Garnet–hornblende geothermometer: A comparative study. Journal of the Geological Society of India, 96(6), 591–596. https://doi.org/10.1007/s12594-020-1607-9
  • Thompson, A. B. (1976). Mineral reactions in pelitic rocks; II, Calculation of some PTX (Fe–Mg) phase relations. American Journal of Science, 276(4), 425–454. https://doi.org/10.2475/ajs.276.4.425
  • Timpa, S., Gillis, K. M., & Canil, D. (2005). Accretion-related metamorphism of the Metchosin igneous complex, southern Vancouver Island British Columbia. Canadian Journal of Earth Sciences, 42(8), 1467–1479. https://doi.org/10.1139/e05-043
  • Vidal, O., de Andrade, V., Lewin, E., Munoz, M., Parra, T., & Pascarelli, S. (2006). P–T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). Journal of Metamorphic Geology, 24(7), 669–683. https://doi.org/10.1111/j.1525-1314.2006.00661.x
  • Vidal, O., Lanari, P., Munoz, M., Bourdelle, F., & De Andrade, V. (2016). Deciphering temperature, pressure, and oxygen activity conditions of chlorite formation. Clay Minerals, 51(4), 615–633. https://doi.org/10.1180/claymin.2016.051.4.06
  • Withnall, I., & Hutton, L. (2013). Chapter 2: North Australian Craton. In P. A. Jell (Ed.), Geology of Queensland (pp 23–112). Geological Survey of Queensland.
  • Wyborn, L. A. I. (1997). Dajarra 1:100,000 digital geology, part of Mount Isa geological digital dataset. Updated by Geological Survey of Queensland 2011, 2015 and 2018. http://pid.geoscience.gov.au/dataset/ga/30923
  • Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M. Ç., & Yıldırım, D. K. (2015). A Windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101–113. https://doi.org/10.1016/j.cageo.2015.04.011
  • Zang, W., & Fyfe, W. S. (1995). Chloritisation of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita, 30(1), 30–38. https://doi.org/10.1007/BF00208874