758
Views
0
CrossRef citations to date
0
Altmetric
Lithospheric to deposit scale magnetotellurics advancements including AusLAMP in Australia

Synthetic magnetotelluric modelling of a regional fault network – implications for survey design and interpretation

&
Received 29 Jun 2021, Accepted 01 Nov 2022, Published online: 05 Dec 2022

References

  • Bourlange, S., P. Henry, J.C. Moore, H. Mikada, and A. Klaus. 2003. Fracture porosity in the décollement zone of Nankai accretionary wedge using logging while drilling resistivity data. Earth and Planetary Science Letters 209 no. 1: 103–112. doi:10.1016/S0012-821X(03)00082-7.
  • Calvert, A.J., and M.P. Doublier. 2018. Archaean continental spreading inferred from seismic images of the Yilgarn Craton. Nature Geoscience 11 no. 7: 526–530. doi:10.1038/s41561-018-0138-0.
  • Celestino, M.A.L., T.S.d. Miranda, G. Mariano, M.d.L. Alencar, B.R.B.M.d. Carvalho, T.d.C. Falcão, J.G. Topan, J.A. Barbosa, and I.F. Gomes. 2020. Fault damage zones width: implications for the tectonic evolution of the northern border of the Araripe Basin, Brazil, NE Brazil. Journal of Structural Geology 138: 104116. doi:10.1016/j.jsg.2020.104116.
  • Chiang, C.W., M.J. Unsworth, C.S. Chen, C.C. Chen, A.T. Lin, and H.L. Hsu. 2008. Fault zone resistivity structure and monitoring at the Taiwan Chelungpu drilling project (TCDP). Terrestrial, Atmospheric and Oceanic Sciences Journal 19: 473–479. doi:10.3319/TAO.2008.19.5.473(T).
  • Choi, J.-H., P. Edwards, K. Ko, and Y.-S. Kim. 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews 152: 70–87. doi:10.1016/j.earscirev.2015.11.006.
  • Duan, J., W. Jiang, D. Kyi, and M. Costelloe. 2020. AusLAMP: Imaging the Australian lithosphere for resource potential, an example from northern Australia. Extended abstract, Exploring for the Future, 1-4.
  • Duan, J., and D. Kyi. 2018. Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): Victoria: Data Release Report. Geoscience Australia. doi:10.11636/Record.2018.021.
  • Duan, J., D. Kyi, and W. Jiang. 2021. Application of Multi-Scale Magnetotelluric Data to Mineral Exploration: An Example from the East Tennant Region, Northern Australia. Geophysical Journal International 229 no. 3: 1628–1645. doi:10.1093/gji/ggac029.
  • Duan, J., D. Taylor, K. Czarnota, R. Cayley, and R. Chopping. 2016. AusLAMP MT over Victoria: New insight from 3D modelling highlights regions of anomalously conductive mantle and unexpected linear trends in the crust. http://www.publish.csiro.au/ex/pdf/ASEG2016ab284.
  • Egbert, G.D., and A. Kelbert. 2012. Computational recipes for electromagnetic inverse problems. Geophysical Journal International. doi:10.1111/j.1365-246X.2011.05347.x.
  • Heinson, G., Y. Didana, P. Soeffky, S. Thiel, and T. Wise. 2018. The crustal geophysical signature of a world-class magmatic mineral system. Scientific Reports 8 no. 1: 1–6. doi:10.1038/s41598-018-29016-2.
  • Jiang, W., J. Duan, M. Doublier, A. Clark, A. Schofield, R. Brodie, and J. Goodwin. 2022. Mapping Crustal Structures through Scale Reduction Magnetotelluric Survey in the East Tennant Region, Northern Australia. Geoscience Australia Extended Abstracts, Exploring for the Future.
  • Kelbert, A., N. Meqbel, G.D. Egbert, and K. Tandon. 2014. ModEM: A modular system for inversion of electromagnetic geophysical data. Computers and Geosciences. doi:10.1016/j.cageo.2014.01.010.
  • Kirkby, A., R.J. Musgrave, K. Czarnota, M.P. Doublier, J. Duan, R. Cayley, and D. Kyi. 2020. Lithospheric architecture of a Phanerozoic orogen from magnetotellurics: AusLAMP in the Tasmanides, southeast Australia. Tectonophysics 793. doi:10.1016/j.tecto.2020.228560.
  • Kirkby, A., F. Zhang, J. Peacock, R. Hassan, and J. Duan. 2019. The MTPy software package for magnetotelluric data analysis and visualisation. Journal of Open Source Software 4 no. 37: 1358–1358. doi:10.21105/joss.01358.
  • Korsch, R.J., and M.P. Doublier. 2016. Major crustal boundaries of Australia, and their significance in mineral systems targeting. Ore Geology Reviews 76: 211–228. doi:10.1016/J.OREGEOREV.2015.05.010.
  • Krieger, L., and J.R. Peacock. 2014. MTpy: A python toolbox for magnetotellurics. Computers & Geosciences 72: 167–175. doi:10.1016/J.CAGEO.2014.07.013.
  • Kyi, D., J. Duan, A. Kirkby, and N. Stolz. 2020. Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales: data release (Phase one). Geoscience Australia. doi:10.11636/Record.2020.011.
  • Martí, A., P. Queralt, A. Marcuello, J. Ledo, E. Rodríguez-Escudero, J.J. Martínez-Díaz, J. Campanyà, and N. Meqbel. 2020. Magnetotelluric characterization of the Alhama de Murcia Fault (Eastern Betics, Spain) and study of magnetotelluric interstation impedance inversion. Earth, Planets and Space 72 no. 1: 16. doi:10.1186/s40623-020-1143-2.
  • Moore, J.C., T.H. Shipley, D. Goldberg, Y. Ogawa, F. Filice, A. Fisher, M.J. Jurado, et al. 1995. Abnormal fluid pressures and fault-zone dilation in the Barbados accretionary prism: evidence from logging while drilling. Geology 23 no. 7: 605–608. doi:10.1130/0091-7613(1995)023<0605:AFPAFZ>2.3.CO;2.
  • Morrow, C., D.A. Lockner, and S. Hickman. 2015. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD. Journal of Geophysical Research: Solid Earth 120 no. 12: 8240–8258. doi:10.1002/2015JB012214.
  • Palacky, G.J. 1988. 3. Resistivity characteristics of geologic targets. In Electromagnetic methods in applied geophysics: Volume 1, Theory, ed. Misac N. Nabighian, 52–129. Society of Exploration Geophysicists. doi:10.1190/1.9781560802631.ch3
  • Pearce, C.I., R.A.D. Pattrick, and D.J. Vaughan. 2006. Electrical and magnetic properties of sulfides. Reviews in Mineralogy and Geochemistry 61 no. 1: 127–180. doi:10.2138/rmg.2006.61.3.
  • Ritter, O., A. Hoffmann-Rothe, P.A. Bedrosian, U. Weckmann, and V. Haak. 2005. Electrical conductivity images of active and fossil fault zones. In High-strain zones: structure and physical properties (Vol. 245), eds. D. Bruhn, and L. Burlini, 165–186 Geological Society of London. doi:10.1144/GSL.SP.2005.245.01.08.
  • Robertson, K., G. Heinson, and S. Thiel. 2016. Lithospheric reworking at the Proterozoic–Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data. Earth and Planetary Science Letters. doi:10.1016/j.epsl.2016.07.036.
  • Robertson, K., S. Thiel, and G. Heinson. 2018. Evolving 3D lithospheric resistivity models across southern Australia derived from AusLAMP MT. ASEG Extended Abstracts 2018 no. 1: 1–5. doi:10.1071/ASEG2018abM2_1G.
  • Thiel, S., B.R. Goleby, M.J. Pawley, and G. Heinson. 2020. AusLAMP 3D MT imaging of an intracontinental deformation zone, Musgrave Province, Central Australia. Earth, Planets and Space 72 no. 1: 98. doi:10.1186/s40623-020-01223-0.
  • Thiel, S., A. Reid, G. Heinson, and K. Robertson. 2016. Insights into lithospheric architecture, fertilisation and fluid pathways from AusLAMP MT. ASEG Extended Abstracts 2016 no. 1: 1–6. doi:10.1071/ASEG2016ab261.
  • Unsworth, M., and P.A. Bedrosian. 2004. Electrical resistivity structure at the SAFOD site from magnetotelluric exploration. Geophysical Research Letters 31 no. 12. doi:10.1029/2003GL019405.
  • Vella, L., and D. Emerson. 2012. Electrical Properties of Magnetite- and Hematite-Rich Rocks and Ores. ASEG Extended Abstracts 2012: 26–29.
  • Wang, L., J. Duan, and J. Simpson. 2018. Electrical conductivity structures from magnetotelluric data in Cloncurry Region. Record. doi:10.11636/Record.2018.005.