527
Views
1
CrossRef citations to date
0
Altmetric
Research

Automated analysis of corneal nerve tortuosity in diabetes: implications for neuropathy detection

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 487-493 | Received 06 Apr 2021, Accepted 28 May 2021, Published online: 27 Jul 2021

References

  • Misra SL, Craig JP, Patel DV, et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Investig Ophthalmol Vis Sci. 2015;56:5060–5065.
  • Jiang M-S, Yuan Y, Gu Z-X, et al. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol. 2016;100:9.
  • Petropoulos IN, Alam U, Fadavi H, et al. Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care. 2013;36:3646.
  • Ahmed A, Bril V, Orszag A, et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care. 2012;35:821–828.
  • Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001;20:374–384.
  • Kim J, Markoulli M. Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin Exp Optom. 2018;101:147–161.
  • Lagali N, Poletti E, Patel DV, et al. Focused tortuosity definitions based on expert clinical assessment of corneal subbasal nerves. Investig Ophthalmol Vis Sci. 2015;56:5102–5109.
  • Kallinikos P, Berhanu M, O’Donnell C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy. Investig Ophthalmol Vis Sci. 2004;45:418–422.
  • Tavakoli M, Kallinikos P, Iqbal A, et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med. 2011;28:1261–1267.
  • Srinivasan S, Dehghani C, Pritchard N, et al. Corneal and retinal neuronal degeneration in early stages of diabetic retinopathy. Investig Ophthalmol Vis Sci. 2017;58:6365–6373.
  • Mehrgardt P, Zandavi SM, Poon S, et al. U-net segmented adjacent angle detection (USAAD) for automatic analysis of corneal nerve structures. Data. 2020;5:37.
  • Dehghani C, Pritchard N, Edwards K, et al. Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Investig Ophthalmol Vis Sci. 2014;55:3195–3199.
  • Cornblath DR, Chaudhry V, Carter K, et al. Total neuropathy score: validation and reliability study. Neurology. 1999;53:1660–1664.
  • Petropoulos IN, Manzoor T, Morgan P, et al. Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea. 2013;32:e83–89.
  • Markoulli M, Flanagan J, Tummanapalli SS, et al. The impact of diabetes on corneal nerve morphology and ocular surface integrity. Ocul Surf. 2018;16:45–57.
  • Vagenas D, Pritchard N, Edwards K, et al. Optimal image sample size for corneal nerve morphometry. Optom Vis Sci. 2012;89:812–817.
  • Dabbah MA, Graham J, Petropoulos I, et al. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. Med Image Comput Comput Assist Interv. 2010;13:300–307.
  • Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–310.
  • Herlyn A, Prakasam RK, Peschel S, et al. Corneal subbasal nerve plexus changes in severe diabetic charcot foot deformity: a pilot study in search for a DNOAP biomarker. J Diabetes Res. 2018;2018:5910639.
  • Nitoda E, Kallinikos P, Pallikaris A, et al. Correlation of diabetic retinopathy and corneal neuropathy using confocal microscopy. Curr Eye Res. 2012;37:898–906.
  • Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf. 2017;15:15–47.
  • Maddaloni E, Sabatino F, Del Toro R, et al. In vivo corneal confocal microscopy as a novel non-invasive tool to investigate cardiac autonomic neuropathy in Type 1 diabetes. Diabet Med. 2015;32:262–266.
  • Yan A, Issar T, Tummanapalli SS, et al. Relationship between corneal confocal microscopy and markers of peripheral nerve structure and function in type 2 diabetes. Diabet Med. 2019;37:326–334.
  • Chiang JCB, Khou V, Tavakoli A, et al. Corneal inferior whorl morphology and reproducibility with in-vivo confocal microscopy in peripheral neuropathy. Proceedings of the ARVO Imaging In The Eye Conference; 2021 May 1–7; Online; Maryland: ARVO; 2021.
  • Borire AA, Issar T, Kwai NC, et al. Correlation between markers of peripheral nerve function and structure in type 1 diabetes. Diabetes Metab Res Rev. 2018;34:e3028.
  • Arnold R, Kwai N, Lin CS-Y, et al. Axonal dysfunction prior to neuropathy onset in type 1 diabetes. Diabetes Metab Res Rev. 2013;29:53–59.
  • Yorek MS, Obrosov A, Shevalye H, et al. Effect of diet-induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice. J Peripher Nerv Syst. 2015;20:24–31.
  • Martin CL, Albers JW, Pop-Busui R. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37:31–38.
  • Grote CW, Groover AL, Ryals JM, et al. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol Commun. 2013;1:15.
  • Callaghan BC, Little AA, Feldman EL, et al. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6:Cd007543.
  • Callaghan BC, Cheng HT, Stables CL, et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11:521–534.
  • Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: a position statement by the American diabetes association. Diabetes Care. 2017;40:136.
  • Müller LJ, Vrensen GF, Pels L, et al. Architecture of human corneal nerves. Investig Ophthalmol Vis Sci. 1997;38:985–994.
  • Yu CQ, Zhang M, Matis KI, et al. Vascular endothelial growth factor mediates corneal nerve repair. Investig Ophthalmol Vis Sci. 2008;49:3870–3878.
  • Di G, Qi X, Zhao X, et al. Corneal epithelium-derived neurotrophic factors promote nerve regeneration. Investig Ophthalmol Vis Sci. 2017;58:4695–4702.
  • Fischer D, Harvey AR, Pernet V, et al. Optic nerve regeneration in mammals: regenerated or spared axons? Exp Neurol. 2017;296:83–88.
  • Eguchi H, Hiura A, Nakagawa H, et al. Corneal nerve fiber structure, its role in corneal function, and its changes in corneal diseases. Biomed Res Int. 2017;2017:1–15.
  • Skundric D. Chemotactic signaling and beyond: link between IL-16 and axonal degeneration in multiple sclerosis. Neural Regen Res. 2015;10:1761–1763.
  • Essuman K, Summers DW, Sasaki Y, et al. The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron. 2017;93:1334–1343.e1335.
  • Tummanapalli SS, Willcox MDP, Issar T, et al. Tear film substance P: a potential biomarker for diabetic peripheral neuropathy. Ocul Surf. 2019;17:690–698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.