301
Views
3
CrossRef citations to date
0
Altmetric
Review

Retinal findings in glomerulonephritis

ORCID Icon, , , , ORCID Icon &
Pages 474-486 | Received 29 Jun 2021, Accepted 02 Nov 2021, Published online: 08 Dec 2021

References

  • Merle NS, Church SE, Fremeaux-Bacchi, et al. Complement system part 1 – molecular mechanisms of activation and regulation. Front Immunol. 2015. DOI:https://doi.org/10.3389/fimmu.2015.00262
  • Merle NS, Noe R, Halbwachs-Mecarelli L, et al. Complement system part 2: role in immunity. Front Immunol. 2015. DOI:https://doi.org/10.3389/fimmu.2015.00257.
  • Cserhalmi M, Papp A, Brandus B, et al. Regulation of regulators: role of the complement factor H-related proteins. Semin Immunol. 2019Oct; 45: 101341.
  • Akhtar-Schäfer I, Wang L, Krohne TU, et al. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med. 2018; 10: e8259.
  • Mohlin C, Sandholm K, Ekdahl KN, et al. The link between morphology and complement in ocular disease. Mol Immunol. 2017; 89: 84–99.
  • Clark SJ, Bishop PN. The eye as a complement dysregulation hotspot. Semin Immunopathol. 2018; 40: 65–74.
  • Fett AL, Hermann MM, Muether PS, et al. Immunohistochemical localization of complement regulatory proteins in the human retina. Hist Histopath. 2012; 27: 357–364.
  • Voigt AP, Mulfaul K, Mullin NK, et al. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A. 2019; 116: 24100–24107.
  • Demirs JT, Yang J, Crowley MA, et al. Differential and altered spatial distribution of complement expression in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2021; 62: 26.
  • Sivapathasuntharam C, Hayes MJ, Shinhmar H, et al. Complement factor H regulates retinal development and its absence may establish a footprint for age related macular degeneration. Sci Rep. 2019; 9: 1082.
  • Yu M, Zou W, Peachey NS, et al. Novel role of complement in retinal degeneration. Invest Ophthalmol Vis Sci. 2012; 53: 7684–7692.
  • Silverman SM, Wong WT. Adaptive and maladaptive complement activation in the retina. Adv Exp Med Biol. 2019; 1185: 33–37.
  • Mukai R, Okunuki Y, Husain D, et al. The complement system is critical in maintaining retinal integrity during aging. Front Aging Neurosci. 2018; 10: 15.
  • Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol. 2018; 11: 1856–1864.
  • Sweigard JH, Matsumoto H, Smith KE, et al. Inhibition of the alternative complement pathway preserves photoreceptors after retinal injury. Sci Transl Med. 2015; 7: 297ra116.
  • Dryja TP, Demirs JT, Twarog M, et al. Complement proteins in the retina in cancer-associated retinopathy. JAMA Ophthalmol. 2019; 137: 1458–1460.
  • Mullins RF, Russell SR, Anderson DH, et al. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 2000; 14: 835–846.
  • Johnson LV, Ozki S, Staples MK, et al. A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res. 2000; 70: 441–449.
  • Anderson DH, Mullins RF, Hageman GS, et al. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002; 134: 411–431.
  • Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A. 2006; 103: 2328–2333.
  • Katschke KJ Jr, Xi H, Cox C, et al. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy. Sci Rep. 2018; 8: 7348.
  • Daruich I, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface. Prog Ret Eye Res. 2018; 63: 20–68.
  • Bomback AS, Smith RJ, Barile GR, et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012;7:748–756.
  • Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmol. 2014; 121: 693–701.
  • Khandhadia S, Hakobyan S, Heng LZ, et al. Age-related macular degeneration and modification of systemic complement factor H production through liver transplantation. Ophthalmol. 2013; 120: 1612–1618.
  • Bomback AS, Markowitz GS, Appel GB. Complement-mediated glomerular diseases: a tale of 3 pathways. Kidney Int Rep. 2016; 1: 148–155.
  • Fakhouri F, Frémeaux-Bacchi V, Noël LH, et al. C3 glomerulopathy: a new classification. Nat Rev Nephrol. 2010; 6: 494–499.
  • Maillard N, Wyatt RJ, Julian BA, et al. Current understanding of the role of complement in IgA nephropathy. Am Soc Nephrol. 2015; 26: 1503–1512.
  • Gaya da Costa M, Poppelaars F, Berger SP, et al. The lectin pathway in renal disease: old concept and new insights. Nephrol Dial Transplant. 2018; 33: 2073–2079.
  • Kheir V, Dirani A, Halfon M, et al. Multimodal imaging of retinal pigment epithelial detachments in individuals with C3 glomerulopathy: case report and review of the literature. BMC Ophthalmol. 2017; 17: 207.
  • González DP, Iglicki M, Svetitsky S, et al. Occlusive retinal vasculopathy with macular branch retinal artery occlusion as a leading sign of atypical hemolytic uremic syndrome – a case report. BMC Ophthalmol. 2021; 2: 65. https://doi-org.ezproxy.mh.org.au/10.1186/s12886-021-01820-x
  • Lin I-H, Chen Y-J, Chang P-Y, et al. Bilateral proliferative retinopathy and ischemic optic neuropathy in a patient with atypical hemolytic-uremic syndrome. Medicine (Baltimore). 2019; 98: e17232.
  • Chiquet C, Lumbroso L, Denis P, et al. Acute posterior multifocal placoid pigment epitheliopathy associated with Wegener’s granulomatosis. Retina. 1999; 19: 309–313.
  • Matsuura M, Taniguchi Y, Terada Y. Retinal and choroidal detachment in antineutrophil cytoplasmic antibody–associated scleritis and retinal vasculitis mimicking choroidal tumor. JCR: J Clinic Rheumatol. 2017; 23: 236–237.
  • Masuda T, Izumi Y, Takeshita H, et al. Granulomatosis with polyangiitis presenting as a choroidal tumor. Case Rep Rheumatol. 2015; 2015: 271823.
  • Curragh DS, McAvoy CE, Rooney M, et al. Post-streptococcal uveitis syndrome in a Caucasian population: a case series. Eye. 2019; 33: 380–384.
  • Etienne M, Gueudry J, Chapuzet C, et al. Post-streptococcal scleritis: corticosteroids avoid visual acuity loss. J Infect. 2012; 65: 575–577.
  • Boucher MC, el Toukhy, EA, Cormier G. Bilateral serous retinal detachments associated with Goodpasture’s syndrome. Can J Ophthalmol. 1998; 33: 46–49.
  • Rowe PA, Mansfield DC, Dutton GN. Ophthalmic features of fourteen cases of Goodpasture’s syndrome. Nephron. 1994; 68: 52–56.
  • Cetin N, Basmak H, Gencler A, et al. Perimacular drusenoid deposits in a child with IgA nephropathy. Can J Ophthalmol. 2018; 53: e71–4.
  • McAvoy C, Silvestri G. Retinal changes associated with type 2 glomerulonephritis. Eye 2005; 19: 985–989.
  • Dalvin LA, Fervenza FC, Sethi S, et al. Manifestations of complement-mediated and immune complex-mediated membranoproliferative glomerulonephritis: a comparative consecutive series. Ophthalmol. 2016; 123: 1588–1594.
  • Leys A, Van Damme B, Verberckmoes R. Ocular complications of type 2 membranoproliferative glomerulonephritis. Nephrol Dial Transplant. 1996; 11: 211–214.
  • D’Souza Y, Short CD, McLeod D, et al. Long-term follow-up of drusen-like lesions in individuals with type II mesangiocapillary glomerulonephritis. Br J Ophthalmol. 2008; 92: 950–953.
  • Savige J, Amos L, Ierino F, et al. Retinal disease in the C3 glomerulopathies and the risk of impaired vision. Ophthalmic Genet. 2016; 37: 369–376.
  • Wang JJ, Rochtchina E, Lee AJ, et al. Ten-year incidence and progression of age-related maculopathy: The Blue Mountains Eye Study. Ophthalmol. 2007; 114: 92–98.
  • Joachim N, Mitchell P, Burlutsky G, et al. The incidence and progression of age-related macular degeneration over 15 years: The Blue Mountains Eye Study. Ophthalmol. 2015; 122: 2482–2489.
  • Pollreisz A, Reiter GS, Bogunovic H, et al. Topographic distribution and progression of soft drusen in age-related macular degeneration implicate neurobiology of the fovea. Invest Ophthalmol Vis Sci. 2021; 62: 26.
  • Huang SJ, Jiun S, Costa DLL, et al. Peripheral drusen in membranoproliferative glomerulonephritis type II. Retina. 2003; 23: 429–431.
  • Lent-Schochet D, Yiu G. Drusen in dense deposit disease: not just age-related macular degeneration. Lancet. 2020; 395: 1726.
  • Han DP, Sievers S. Extensive drusen in type I membranoproliferative glomerulonephritis. JAMA Ophthalmol. 2009; 127: 577–579.
  • Michielsen B, Leys A, Van Damme B, et al. Fundus changes in chronic membranoproliferative glomerulonephritis type II. Doc Ophthalmol. 1990-1991; 76: 219–229.
  • Duvall-Young J, MacDonald MK, McKechnie NM. Fundus changes in (type II) mesangiocapillary glomerulonephritis simulating drusen: a histopathological report. Br J Ophthalmol. 1989; 73: 297–302.
  • Lally DR, Baumal C. Subretinal drusenoid deposits associated with complement-mediated IgA nephropathy. JAMA Ophthalmol. 2014; 132: 775–777.
  • Colville D, Guymer R, Sinclair RA, et al. Visual impairment caused by retinal abnormalities in mesangiocapillary (membranoproliferative) glomerulonephritis type II (“dense deposit disease”). Am J Kidney Dis. 2003; 42: E2–5.
  • Mullins RF, Aptsiauri N, Hageman GS. Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye. 2001; 15: 390–395.
  • D’souza YB, Jones CJP, Short CD, et al. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II. Kidney Int. 2009; 75: 824–827.
  • Rudolf M, Clark ME, Chimento M, et al. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest Ophthalmol Vis Sci. 2008; 49: 1200–1209.
  • Servais A, Noël LH, Roumenina LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012; 82: 454–464.
  • Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021; 7: 31.
  • Skerka C, Lauer N, Weinberger AA, et al. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol. 2007; 44: 3398–3406.
  • Mullins RF, Johnson MN, Faidley EA, et al. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011; 52: 1606–1612.
  • Curcio CA. Soft drusen in age-related macular degeneration: biology and targeting, via the oil spill strategy. Invest Ophthalmol Vis Sci. 2018; 59: AMD160–AMD181.
  • Curcio CA. Antecedents of soft drusen, the specific deposit of age-related macular degeneration, in the biology of human macula. Invest Ophthalmol Vis Sci. 2018; 59: AMD182–AMD194.
  • Pilgrim MG, Lengyel I, Lanzirotti A, et al. Sub-retinal pigment epithelial deposition of drusen components including hydroxyapatite in a primary cell culture model. Invest Ophthalmol Vis Sci. 2017; 58: 708–719.
  • Spaide RF. Improving the age-related macular degeneration construct: a new classification system. Retina. 2017; 38: 891–899.
  • Leys A, Vanrenterghem Y, Van Damme B, et al. Sequential observation of fundus changes in individuals with long standing membranoproliferative glomerulonephritis type II (MPGN type II). Eur J Ophthalmol. 1991; 1: 17–22.
  • Yan Y, Zhang Q. Bilateral posterior scleritis presenting as the first manifestation of immunoglobulin a nephropathy: case report and review of the literature. Ocul Immunol Inflamm. 2016; 24: 43–48.
  • Seles S, Kupferschmid S, Kürzinger G, et al. Drusen in individuals with systemic lupus erythematosus associated with complement factor H gene polymorphism. Invest Ophthalmol Vis Sci. 2007; 48: 3688.
  • Baglio V, Gharbiya M, Balacco-Gabrieli C, et al. Choroidopathy in individuals with systemic lupus erythematosus with or without nephropathy. J Nephrol. 2011; 24: 522–529.
  • Invernizzi A, dell’Arti L, Leone G, et al. Drusen-like deposits in young adults diagnosed with systemic lupus erythematosus. Am J Ophthalmol. 2017; 175: 68–76.
  • Pavlin CJ, Easterbrook M, Harasiewicz K, et al. An ultrasound biomicroscopic analysis of angle-closure glaucoma secondary to ciliochoroidal effusion in IgA nephropathy. Am J Ophthalmol. 1993; 116: 341–345.
  • O’Neill D, Harvey P, Longstaff S, et al. Retinal vasculitis and uveitis in IgA nephritis. Eye. 1994; 8: 711–713.
  • Kwok AK, Cheng LL, Bhende P, et al. Tear of the retinal pigment epithelium and serous retinal detachment in a case of IgA nephropathy after renal transplantation. Arch Ophthalmol. 2000; 118: 582–583.
  • Andión-Fernández M, Dorado-Fernández T, Juárez-Casado MA, et al. Bilateral serous retinal detachments associated with IgA nephropathy. Arch Soc Esp Oftalmol. 2015; 90: 531–535.
  • Taban M, Chand D, Sears JE. Ocular findings in IgA nephropathy with renal failure and hypertension. J Pediatr Ophthalmol Strabismus. 2006; 43: 378–380.
  • Takhar JS, Gonzales JA. IgA nephropathy-associated uveitis: a case presentation. Ocul Immunol Inflamm. 2019; 1–4. DOI:https://doi.org/10.1080/09273948.2019.1651873
  • Hannouche D, Korobelnik JF, Cochereau I, et al. Systemic lupus erythematosus with choroidopathy and serous retinal detachment. Int Ophthalmol. 1995; 19: 125–127.
  • Bene MC, De Ligny BH, Daniel Sirbat D, et al. IgA nephropathy: dimeric IgA-secreting cells are present in episcleral infiltrate. Am J Clin Path. 1984; 82: 608–611.
  • Greenwood GT. Case report of atypical hemolytic uremic syndrome with retinal arterial and venous occlusion treated with eculizumab. Int Med Case Rep J. 2015; 8: 235–239.
  • Dammacco R, Procaccio P, Racanelli V, et al. Ocular involvement in systemic lupus erythematosus: the experience of two tertiary referral centers. Ocul Immunol Inflamm. 2018; 26: 1154–1165.
  • Huang G, Shen H, Zhao J, et al. Severe vaso-occlusive lupus retinopathy in the early stage of a pediatric patient with systemic lupus erythematosus: a case report. Medicine (Baltimore). 2020; 99: e19875.
  • Jorge R, Scott IU, Daré A, et al. Hemiretinal vein occlusion associated with membranous glomerulonephritis. Am J Ophthalmol. 2002; 133: 415–416.
  • Zheng X, Gorovoy IR, Mao J, et al. Recurrent ocular involvement in pediatric atypical hemolytic uremic syndrome. J Pediatr Ophthalmol Strabismus. 2014; 51: e62–e65.
  • Wang M, Khurana RN, Sadda SR. Central retinal vein occlusion in Wegener’s granulomatosis without retinal vasculitis. Br J Ophthalmol. 2006; 90: 1435–1436.
  • Matlach J, Freiberg FJ, Gadeholt O, et al. Vasculitis-like hemorrhagic retinal angiopathy in Wegener’s granulomatosis. BMC Res Notes. 2013; 6: 364.
  • Filloy A, Comas C, Català-Mora J. Anterior and intermediate uveitis with retinal vasculitis: an unusual manifestation of post-streptococcal uveitis syndrome. Ocul Immunol Inflamm. 2016; 24: 607–609.
  • Noh UKM, Zairani A, Zahidin A, et al. Retinal vasculitis in systemic lupus erythematosus: an indication of active disease. Clin Pract. 2012; 2: e54.
  • Freeman WR, Stern WH, Gross JG, et al. Pathologic observations made by retinal biopsy. Retina. 1990; 10: 195–204.
  • Cashman SJ, Pusey CD, Evans DJ. Extraglomerular distribution of immunoreactive Goodpasture antigen. J Pathol. 1988; 155: 61–70.
  • Aronson AJ, Ordoñez NG, Diddie KR, et al. Immune-complex deposition in the eye in systemic lupus erythematosus. Arch Intern Med. 1979; 139: 1312–1313.
  • David R, Hochberg-Klein S, Amer, S. Resolution of ocular involvement with systemic eculizumab therapy in atypical hemolytic-uremic syndrome. Eye. 2013; 27: 997–998.
  • Gange WS, Haghighi A, Toy BC. Purtscher-like retinopathy associated with atypical hemolytic uremic syndrome. Ret Cases Brief Rep. 2021. doi:https://doi.org/10.1097/ICB.0000000000001126
  • Shapiro I, Jacob H. Leukoembolization in ocular vascular occlusion. Ann Ophthalmol. 1982; 14: 60–62.
  • Palejwala NV, Walia HS, Yeh S. Ocular manifestations of systemic lupus erythematosus: a review of the literature. article 290898 Autoimmune Dis.2012; 9.
  • Kamdar NV, Erko A, Ehrlich JS, et al. Choroidopathy and kidney disease: a case report and review of the literature. Cases J. 2009; 2: 7425.
  • Hasanreisoglu M, Gulpinar Ikiz GD, Kucuk H, et al. Acute lupus choroidopathy: multimodal imaging and differential diagnosis from central serous chorioretinopathy. Int Ophthalmol. 2018; 38: 369–374.
  • Han YS, Yang CM, Lee S-H, et al. Secondary angle closure glaucoma by lupus choroidopathy as an initial presentation of systemic lupus erythematosus: a case report. BMC Ophthalmol. 2015; 15: 148.
  • Wu C, Dai R, Dong F, et al. Purtscher-like retinopathy in systemic lupus erythematosus. Am J Ophthalmol. 2014;158:1335–1341.
  • Savige J, Ratnaike S, Colville D. Retinal abnormalities characteristic of inherited renal disease. J Am Soc Nephrol. 2011; 22: 1403–1415.
  • Keir LS, Firth R, Aponik L, et al. VEGF regulates local inhibitory complement proteins in the eye and kidney. J Clin Invest. 2017; 127: 199–214.
  • Montes T, Goicoechea de Jorge E, Ramos R, et al. Genetic deficiency of complement factor H in a patient with age-related macular degeneration and membranoproliferative glomerulonephritis. Mol Immunol. 2008; 45: 2897–2904.
  • Clark SJ, Ridge LA, Herbert AP, et al. Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. J Immunol. 2013; 90: 2049–2057.
  • Langford-Smith A, Keenan TD, Clark SJ, et al. The role of complement in age-related macular degeneration: heparan sulphate, a ZIP code for complement factor H? J Innate Immun. 2014; 6: 407–416.
  • Raychaudhuri S, Iartchouk O, Chin K, et al. A rare penetrant mutation in complement factor H confers high risk of age-related macular degeneration. Nat Genet. 2011; 43: 1232–1236.
  • Recalde S, Tortajada A, Subias M, et al. Molecular basis of factor H R1210C association with ocular and renal diseases. JASN. 2016; 27: 1305–1311.
  • Nozu K, Nakanishi K, Abe Y, et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol. 2019; 23: 158–168.
  • Savige J, Liu J, DuBuc DC, et al. Retinal basement membrane abnormalities and the retinopathy of Alport syndrome. Invest Ophthalmol Vis Sci. 2010; 51: 1621–1627.
  • Savige J, Sheth S, Leys A, et al. Ocular features in Alport syndrome: pathogenesis and clinical significance. Clin J Am Soc Nephrol. 2015; 10: 703–709.
  • Shaw EA, Colville D, Yan Sheath Wang YY, et al. Characterization of the peripheral retinopathy in X-linked and autosomal recessive Alport syndrome. Nephrol Dial Trans. 2007; 22: 104–108.
  • Tao J, Lieberman J, Lafayette RA, et al. A rare case of Alport syndrome, atypical hemolytic uremic syndrome and Pauci-immune crescentic glomerulonephritis. BMC Nephrol. 2018; 19: 355.
  • Awan MA, Grierson DJ, Walker S. Bilateral macular sub-retinal fluid and retinal pigment epithelial detachment associated with type 2 membrano-proliferative glomerulonephritis. Clin Exp Optom. 2008; 91: 476–479.
  • Mansour AM, Lima LH, Arevalo JF, et al. Retinal findings in membranoproliferative glomerulonephritis. Am J Ophthalmol Case Rep. 2017; 7: 83–90.
  • Hassenstein A, Richard G. [Choroidal neovascularisation in type II membranoproliferative glomerulonephritis, photodynamic therapy as a treatment option–a case report]. [Article in German]. Klin Monbl Augenheilkd. 2003; 220: 492–495.
  • McCullagh D, Silvestri G, Maxwell AP. Treatment of choroidal neovascularisation secondary to membranoproliferative glomerulonephritis type II with intravitreal ranibizumab. BMJ Case Rep. 2014. DOI:https://doi.org/10.1136/bcr-2013-010247
  • Nakamura S, Ohue O, Sawaguchi A. Genetic polymorphism of human factor H (β1H Globulin). Hum Hered. 1990; 40: 121–126.
  • Gambato T, Francescutti L, Lanzetta P. Choroidal neovascularization in primary membranous nephropathy. Am J Case Rep. 2020; 21: e923454.
  • Potter D, Liew G, Cleland B. A case of anti-glomerular basement membrane disease with renal and ocular involvement treated with anti-VEGF injections. J Ren Med. 2018; 2: 1.
  • Furfine E, Rao A, Baker S, et al. Pegylated CB2782: a complement factor C3-inactivating protease and potential long-acting treatment for dry AMD. IOVS. 2019; 60: 374.
  • Cashman SM, Gracias J, Adhi M, et al. Adenovirus-mediated delivery of Factor H attenuates complement C3 induced pathology in the murine retina: a potential gene therapy for age-related macular degeneration. J Gene Med. 2015; 17: 229–243.
  • Khanani AM, Aziz AA, Weng CY, et al. Port delivery system: a novel drug delivery platform to treat retinal diseases [published online ahead of print, 2021 Aug 24]. Expert Opin Drug Deliv. 2021; 1–6. DOI:https://doi.org/10.1080/17425247.2021.1968826.
  • Naftali Ben Haim L, Moisseiev E. Drug delivery via the suprachoroidal space for the treatment of retinal diseases. Pharmaceutics. 2021; 13: 967.
  • Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. Eur J Pharmacol. 2016; 787: 94–104.
  • Park DH, Connor KM, Lambris JD. The challenges and promise of complement therapeutics for ocular diseases. Front Immunol. 2019; 10: 1007.
  • Kassa E, Ciulla TA, Hussain RM, et al. Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin Biol Ther. 2019; 19: 335–342.
  • Chi ZL, Yoshida T, Lambris JD, et al. Suppression of drusen formation by compstatin, a peptide inhibitor of complement C3 activation, on cynomolgus monkey with early-onset macular degeneration. Adv Exp Med Biol. 2010; 703: 127–35.
  • Jaffe GJ, Westby K, Csaky KG, et al. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration: a randomized pivotal phase 2/3 trial. Ophthalmol. 2020. DOI:https://doi.org/10.1016/j.ophtha.2020.08.027.
  • Garcia Filho CA, Yehoshua Z, Gregori G, et al. Change in drusen volume as a novel clinical trial endpoint for the study of complement inhibition in age-related macular degeneration. Ophthal Surg Lasers Imaging Retina. 2014; 45: 18–31.
  • Gallemore RP, Elman MJ, Milton M, et al. A proof of concept study of intravitreal (IVT) LFG316 in individuals with neovascular age related macular degeneration (nAMD). Invest Ophthalmol Vis Sci. 2016; 57: 4986.
  • Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration. Chroma and Spectri phase 3 randomized clinical trials. JAMA Ophthalmol 2018; 136: 666–677.
  • Terheyden J. H., Schmitz-Valckenberg S, Crabbe, D. P, et al. Use of composite end points in early and intermediate age-related macular degeneration clinical trials: state-of-the-art and future directions. Ophthalmologica. 2020. DOI:https://doi.org/10.1159/000513591.
  • Liao DS, Grossi FV, El Mehdi D, et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmol. 2020; 127: 186–195.
  • Wykoff CC, Rosenfeld PJ, Waheed NK, et al. Characterizing new-onset exudation in the randomized phase 2 FILLY trial of complement inhibitor pegcetacoplan for geographic atrophy. Ophthalmol. 2021 Mar 9;S0161-6420(21)00163-9. DOI:https://doi.org/10.1016/j.ophtha.2021.02.025.
  • Rizk DV, Maillard N, Julian BA, et al. The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol. 2019. DOI:https://doi.org/10.3389/fimmu.2019.00504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.