321
Views
2
CrossRef citations to date
0
Altmetric
Review

Scotopic microperimetry: evolution, applications and future directions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 793-800 | Received 24 Jun 2021, Accepted 22 Dec 2021, Published online: 13 Jan 2022

References

  • Jolly JK, Bridge H, MacLaren RE. Outcome measures used in ocular gene therapy trials: a scoping review of current practice. Front Pharmacol. 2019;10:1076.
  • Dimopoulos IS, Freund PR, Knowles JA, et al. The natural history of full-field stimulus threshold decline in choroideremia. Retina. 2018;38:1731–1742.
  • Verbakel SK, van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–186.
  • Tahir HJ, Rodrigo-Diaz E, Parry NRA, et al. Slowed dark adaptation in early AMD: dual stimulus reveals scotopic and photopic abnormalities. Invest Ophthalmol Vis Sci. 2018;59:AMD202–AMD210.
  • Hess K, Gliem M, Charbel Issa P, et al. Mesopic and Scotopic light sensitivity and its microstructural correlates in pseudoxanthoma elasticum. JAMA Ophthalmol. 2020;138:1272–1279.
  • Gloriani AH, Schütz AC. Humans trust central vision more than peripheral vision even in the dark. Curr Biol. 2019;29:1206–1210 e1204.
  • Midena E, Pilotto E. Microperimetry in age: related macular degeneration. Eye (Lond). 2017;31:985–994.
  • Jolly JK, Xue K, Edwards TL, et al. Characterizing the natural history of visual function in choroideremia using microperimetry and multimodal retinal imaging. Invest Ophthalmol Vis Sci. 2017;58:5575–5583.
  • Pfau M, Jolly JK, Wu Z, et al. Fundus-controlled perimetry (microperimetry): application as outcome measure in clinical trials. Prog Retin Eye Res. 2020;82:100907. https://doi.org/10.1016/j.preteyeres.2020.100907.
  • Simunovic MP, Moore AT, MacLaren RE. Selective automated perimetry under photopic, mesopic, and scotopic conditions: detection mechanisms and testing strategies. Transl Vis Sci Technol. 2016;5:10.
  • McGuigan DB 3rd, Roman AJ, Cideciyan AV, et al. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa: filling a need to accommodate multicenter clinical trials. Invest Ophthalmol Vis Sci. 2016;57:3118–3128.
  • Jacobson SG, Apáthy PP, Parel J-M. Rod and cone perimetry: computerized testing and analysis. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. St. Louis (MO): Mosby, Inc; 1991. p. 475–482.
  • Wald G, Zeavin BH. Rod and cone vision in retinitis pigmentosa. Am J Ophthalmol. 1956;42:253–269.
  • Massof RW, Finkelstein D. Rod sensitivity relative to cone sensitivity in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1979;18:263–272.
  • Gloor BP. Franz Fankhauser: the father of the automated perimeter. Surv Ophthalmol. 2009;54:417–425.
  • Ernst W, Faulkner DJ, Hogg CR, et al. An automated statis perimeter/adaptometer using light emitting diodes. Br J Ophthalmol. 1983;67:431–442.
  • Jacobson SG, Voigt WJ, Parel J-M, et al. Automated light- and dark- adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology. 1986;93:1604–1611.
  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–2239.
  • Heckenlively JR, Arden GB. Principles and practice of clinical electrophysiology of vision. St Louis Missouri: Mosby Year Book; 1991.
  • Simunovic MP, Hess K, Avery N, et al. Threshold versus intensity functions in two-colour automated perimetry. Ophthalmic Physiol Opt. 2021;41:157–164.
  • Heeren TFC, Tzaridis S, Bonelli R, et al. Dark-adapted two-color fundus-controlled perimetry in macular telangiectasia type 2. Invest Ophthalmol Vis Sci. 2019;60:1760–1767.
  • Fraser RG, Tan R, Ayton LN, et al. Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57:5436–5442.
  • Tan RS, Guymer RH, Luu CD. Repeatability of retinal sensitivity measurements using a medmont dark-adapted chromatic perimeter in healthy and age-related macular degeneration cases. Transl Vis Sci Technol. 2018;7:3.
  • Bennett LD, Klein M, Locke KG, et al. Dark-adapted chromatic perimetry for measuring rod visual fields in patients with retinitis pigmentosa. Transl Vis Sci Technol. 2017;6:15.
  • Nguyen CT, Fraser RG, Tan R, et al. Longitudinal changes in retinotopic rod function in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59:AMD19–AMD24.
  • Stingl K, Stingl K, Nowomiejska K, et al. Clinical protocols for the evaluation of rod function. Ophthalmologica. 2021;244:396–407.
  • Crossland Md, Luong VA, Rubin GS, et al. Retinal specific measurement of dark-adapted visual function: validation of a modified microperimeter. BMC Ophthalmol. 2011;11:5.
  • Steinberg JS, Fitzke FW, Fimmers R, et al. Scotopic and photopic microperimetry in patients with reticular drusen and age-related macular degeneration. JAMA Ophthalmol. 2015;133:690–697.
  • Sassmannshausen M, Pfau M, Thiele S, et al. Longitudinal analysis of structural and functional changes in presence of reticular pseudodrusen associated with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2020;61:19.
  • Bowl W, Stieger K, Lorenz B. Fundus-controlled two-color dark adaptometry with the microperimeter MP1. Graefe’s Arch Clinl Exp Ophthalmol. 2015;253:965–972.
  • Salvatore S, Fishman GA, McAnany JJ, et al. Association of dark-adapted visual function with retinal structural changes in patients with stargardt disease. Retina (Philadelphia, Pa). 2014;34:989–995.
  • Nebbioso M, Barbato A, Pescosolido N. Scotopic microperimetry in the early diagnosis of age-related macular degeneration: preliminary study. BioMed Res Int. 2014;2014:671529.
  • Quintana NPL, Fernandez-Nunez C, Alberto-Pestano M, et al. Retinal sensitivity and foveal fixation, measured by photopic and scotopic microperimetry, in patients with diabetic retinopathy and healthy subjects. Invest Ophthalmol Vis Sci. 2020;61:4854.
  • Carrasco OED, Fernandez-Nunez C, Alberto-Pestano M, et al. Usefulness of photopic and scotopic microperimetry in the early diagnosis of macular toxicity secondary to hydroxychloroquine use. Invest Ophthalmol Vis Sci. 2020;61:5320.
  • Pfau M, Müller PL, Von der Emde L, et al. Mesopic and dark-adapted two colour fundus-controlled perimetry in geographic atrophy secondary to age-related macular degeneration. Retina. 2020;40:169–180.
  • Pfau M, Lindner M, Fleckenstein M, et al. Test-retest reliability of scotopic and mesopic fundus-controlled perimetry using a modified MAIA (macular integrity assessment) in normal eyes. Ophthalmologica. 2017;237:42–54.
  • Pfau M, Lindner M, Steinberg JS, et al. Visual field indices and patterns of visual field deficits in mesopic and dark-adapted two-colour fundus-controlled perimetry in macular diseases. Br J Ophthalmol. 2018;102:1054–1059.
  • Pfau M, Von der Emde L, Dysli C, et al. Determinants of cone and rod functions in geographic atrophy: AI-based structure-function correlation. Am J Ophthalmol. 2020;217:162–173.
  • Welker SG, Pfau M, Heinemann M, et al. Retest reliability of mesopic and dark-adapted microperimetry in patients with intermediate age-related macular degeneration and age-matched controls. Invest Ophthalmol Vis Sci. 2018;59:AMD152–AMD159.
  • Von der Emde L, Pfau M, Thiele S, et al. Mesopic and dark-adapted two-color fundus-controlled perimetry in choroidal neovascularization secondary to age-related macular degeneration. Transl Vis Sci Technol. 2018;8:7.
  • Nassisi M, Tepelus T, Corradetti G, et al. Relationship between choriocapillaris flow and Scotopic microperimetry in early and intermediate age-related macular degeneration. Am J Ophthalmol. 2021;222:302–309.
  • Jolly JK, Buckley TMW, Pfau M, et al. Assessment of Scotopic function in rod-cone inherited retinal degeneration with the Scotopic MAIA. Forthcoming 2022.
  • Pondorfer SG, Heinemann M, Wintergerst MWM, et al. Detecting vision loss in intermediate age-related macular degeneration: a comparison of visual function tests. PLoS One. 2020;15:e0231748.
  • Terheyden JH, Holz FG, Schmitz-Valckenberg S, et al. Clinical study protocol for a low-interventional study in intermediate age-related macular degeneration developing novel clinical endpoints for interventional clinical trials with a regulatory and patient access intention-MACUSTAR. Trials. 2020;21:659.
  • Curcio CA, McGwin G, Sadda SR, et al. Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods. BMC Ophthalmol. 2020;20:196.
  • Han RC, Jolly JK, Xue K, et al. Effects of pupil dilation on MAIA microperimetry. Clin Exp Ophthalmol. 2017;45:489–495.
  • Birch DG, Wen Y, Locke K, et al. Rod sensitivity, cone sensitivity, and photoreceptor layer thickness in retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2011;52:7141–7147.
  • Steinberg JS, Sassmannshausen M, Pfau M, et al. Evaluation of two systems for fundus-controlled scotopic and mesopic perimetry in eye with age-related macular degeneration. Transl Vis Sci Technol. 2017;6:7.
  • Marmor MF. A brief history of macular grids: from Thomas Reid to Edvard Munch and Marc Amsler. Surv Ophthalmol. 2000;44:343–353.
  • Locke KG, Duwel S, Cideciyan AV, et al. Progressive loss of rod sensitivity in patients with autosomal dominant retinitis pigmentosa (adRP) due to RHO Pro23His mutation. Invest Ophthalmol Vis Sci. 2017;58:3259.
  • Owsley C, Jackson GR, White M, et al. Delays in rod-mediated dark adaptation in early age-related maculopathy. Ophthalmology. 2001;108:1196–1202.
  • Jackson GR, Owsley C, McGwin G. Aging and dark adaptation. Vision Res. 1999;39:3975–3982.
  • Yang G-Q, Chen T, Tao Y, et al. Recent advances in the dark adaptation investigations. Int J Ophthalmol. 2015;8:1245–1252.
  • Naska KTK, Hogg R, Morales MU, et al. Impact of dark adaptation time on the Scotopic microperimeter S-MAIA. Invest Ophthalmol Vis Sci. 2018;59:1273.
  • Montesano G, Naska TK, Higgins BE, et al. Determinants of test variability in Scotopic microperimetry: effects of dark adaptation and test indices. Transl Vis Sci Technol. 2021;10:26.
  • Jolly JK, Dubis AM, Hogg C, et al., Local versus global assessment of dark adaptation and Scotopic function in retinal dystrophy. Forthcoming 2022.
  • Chen KG, Alvarez JA, Yazdanie M, et al. Longitudinal study of dark adaptation as a functional outcome measure for age-related macular degeneration. Ophthalmology. 2019;126:856.
  • Fitzke FW. Dark adaptation in retinal abnormalities. Br J Ophthalmol. 1994;78:426.
  • Denniss J, Astle AT. Spatial interpolation enables normative data comparison in gaze-contingent microperimetry. Invest Ophthalmol Vis Sci. 2016;57:5449–5456.
  • Astle AT, Ali I, Denniss J. Central visual field sensitivity data from microperimetry with spatially dense sampling. Data Brief. 2016;9:673–675.
  • Wong EN, Mackey DA, Morgan WH, et al. Intersession test-retest variability of conventional and novel parameters using the MP-1 microperimeter. Clin Ophthalmol. 2015;10:29–42.
  • Weleber RG, Smith TB, Peters D, et al. VFMA: topographic analysis of sensitivity data from full-field static perimetry. Transl Vis Sci Technol. 2015;4:14.
  • Georgiou M, Singh N, Kane T, et al. Long-term investigation of retinal function in patients with achromatopsia. Invest Ophthalmol Vis Sci. 2020;61:38.
  • Josan AS, Buckley TMW, Wood LJ, et al. Microperimetry hill of vision and volumetric measures of retinal sensitivity. Transl Vis Sci Technol. 2021;10:12.
  • Bennett LD, Metz G, Klein M, et al. Regional variations and intra-/intersession repeatability for scotopic sensitivity in normal controls and patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci. 2019;60:1122–1131.
  • Steinberg J, Sassmannshausen M, Fleckenstein M, et al. Longitudinal analysis of structural and functional changes in patients with reticular drusen and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017;58:16.
  • Cideciyan AV, Roman AJ, Jacobson SG, et al. Developing an outcome measure with high luminance for optogenetics treatment of severe retinal degenerations and for gene therapy of cone diseases. Invest Ophthalmol Vis Sci. 2016;57:3211–3221.
  • Wilson SJ, Glue P, Ball D, et al. Saccadic eye movement parameters in normal subjects. Electroencephalogr Clin Neurophysiol. 1993;86:69–74.
  • Cideciyan AV, Charng L, Swider M, et al. Comparative measurements of rod function in retinal degenerations with two-color dark-adapted perimetry. Invest Ophthalmol Vis Sci. 2016;57.
  • Hood DC, Greenstein V. Models of the normal and abnormal rod system. Vision Res. 1990;30:51–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.