350
Views
0
CrossRef citations to date
0
Altmetric
Review

Spherical aberrations and their role in modern ophthalmology

ORCID Icon, , ORCID Icon, &
Pages 703-710 | Received 20 Jul 2022, Accepted 03 Nov 2022, Published online: 23 Feb 2023

References

  • Young T. On the mechanism of the eye. Philos Trans Royal Soc London PI 1801; 91: 23–88. + plates.
  • el-Hage SG, Berny F. Contribution of the crystalline lens to the spherical aberration of the eye. J Opt Soc Am 1973; 63: 205–211.
  • Kingston AC, Cox IG. Population spherical aberration: associations with ametropia, age, corneal curvature, and image quality. Clin Ophthalmol 2013; 7: 933–938.
  • Amano S, Amano Y, Yamagami S et al. Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol 2004; 137: 988–992.
  • Martinez CE, Applegate RA, Klyce SD et al. Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 1998; 116: 1053–1062.
  • Atchison DA, Scott DH. The Stiles-Crawford effect and subjective measurement of aberrations. Vision Res 2002; 42: 1089–1102.
  • Fernandez J, Rodriguez-Vallejo M, Burguera N et al. Spherical aberration for expanding depth of focus. J Cataract Refract Surg 2021; 47: 1587–1595.
  • Ng CJ, Blake R, Banks MS et al. Optics and neural adaptation jointly limit human stereovision. Proc Natl Acad Sci USA 2021; 118: e2100126118.
  • Rocha KM, Vabre L, Harms F et al. Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology. J Refract Surg 2007; 23: 953–959.
  • Villegas EA, Alcon E, Artal P. Optical quality of the eye in subjects with normal and excellent visual acuity. Invest Ophthalmol Vis Sci 2008; 49: 4688–4696.
  • Bellucci R, Cargnoni M, Bellucci C. Clinical and aberrometric evaluation of a new extended depth-of-focus intraocular lens based on spherical aberration. J Cataract Refract Surg 2019; 45: 919–926.
  • Ganesh S, Brar S, Gautam M et al. Visual and refractive outcomes following laser blended vision using non-linear aspheric micro-monovision. J Refract Surg 2020; 36: 300–307.
  • Grzybowski A, Kanclerz P, Muzyka-Wozniak M. Methods for evaluating quality of life and vision in patients undergoing lens refractive surgery. Graefes Arch Clin Exp Ophthalmol 2019; 257: 1091–1099.
  • Maxwell A, Holland E, Cibik L et al. Clinical and patient-reported outcomes of bilateral implantation of a +2.5 diopter multifocal intraocular lens. J Cataract Refract Surg 2017; 43: 29–41.
  • Mangione CM, Lee PP, Pitts J et al. Psychometric properties of the National Eye Institute Visual Function Questionnaire (NEI-VFQ). NEI-VFQ field test investigators. Arch Ophthalmol 1998; 116: 1496–1504.
  • Levy P, Elies D, Dithmer O et al. Development of a new subjective questionnaire: the Freedom from Glasses Value Scale (FGVS). J Refract Surg 2010; 26: 438–446.
  • Morlock R, Wirth RJ, Tally SR et al. Patient-Reported Spectacle Independence Questionnaire (PRSIQ): development and validation. Am J Ophthalmol 2017; 178: 101–114.
  • Steinberg EP, Tielsch JM, Schein OD et al. The VF-14. An index of functional impairment in patients with cataract. Arch Ophthalmol 1994; 112: 630–638.
  • Lundstrom M, Roos P, Jensen S et al. Catquest questionnaire for use in cataract surgery care: description, validity, and reliability. J Cataract Refract Surg 1997; 23: 1226–1236.
  • Gupta N, Wolffsohn JS, Naroo SA et al. Development of a near activity visual questionnaire to assess accommodating intraocular lenses. Cont Lens Anterior Eye 2007; 30: 134–143.
  • Schwiegerling J. Theoretical limits to visual performance. Surv Ophthalmol 2000; 45: 139–146.
  • Marcos S, Burns SA, Moreno-Barriusop E et al. A new approach to the study of ocular chromatic aberrations. Vision Res 1999; 39: 4309–4323.
  • Spadea L, Maraone G, Verboschi F et al. Effect of corneal light scatter on vision: a review of the literature. Int J Ophthalmol 2016; 9: 459–464.
  • Kligman BE, Baartman BJ, Dupps WJ Jr. Errors in treatment of lower-order aberrations and induction of higher-order aberrations in laser refractive surgery. Int Ophthalmol Clin 2016; 56: 19–45.
  • Molebny VV, Panagopoulou SI, Molebny SV et al. Principles of ray tracing aberrometry. J Refract Surg 2000; 16: S572–575.
  • Cook WH, McKelvie J, Wallace HB et al. Comparison of higher order wavefront aberrations with four aberrometers. Indian J Ophthalmol 2019; 67: 1030–1035.
  • Thibos LN, Hong X. Clinical applications of the Shack-Hartmann aberrometer. Optom Vis Sci 1999; 76: 817–825.
  • Maeda N. Clinical applications of wavefront aberrometry - a review. Clin Exp Ophthalmol 2009; 37: 118–129.
  • Cade F, Cruzat A, Paschalis EI et al. Analysis of four aberrometers for evaluating lower and higher order aberrations. PLoS One 2013; 8: e54990.
  • Gabriel C, Klaproth OK, Titke C et al. Repeatability of topographic and aberrometric measurements at different accommodative states using a combined topographer and open-view aberrometer. J Cataract Refract Surg 2015; 41: 806–811.
  • Holzer MP, Goebels S, Auffarth GU. Precision of NIDEK OPD-scan measurements. J Refract Surg 2006; 22: S1021–1023.
  • Plaza-Puche AB, Salerno LC, Versaci F et al. Clinical evaluation of the repeatability of ocular aberrometry obtained with a new pyramid wavefront sensor. Eur J Ophthalmol 2019; 29: 585–592.
  • Piccinini AL, Golan O, Torres-Netto EA et al. Corneal higher-order aberrations measurements: comparison between Scheimpflug and dual Scheimpflug-Placido technology in keratoconic eyes. J Cataract Refract Surg 2019; 45: 985–991.
  • Ramamurthy S, Soundarya B, Sachdev GS. Topography-guided treatment in regular and irregular corneas. Indian J Ophthalmol 2020; 68: 2699–2704.
  • Pasquali T, Krueger R. Topography-guided laser refractive surgery. Curr Opin Ophthalmol 2012; 23: 264–268.
  • Kim SW, Ahn H, Kim EK et al. Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses. Eye (Lond) 2008; 22: 1493–1498.
  • Wang L, Santaella RM, Booth M et al. Higher-order aberrations from the internal optics of the eye. J Cataract Refract Surg 2005; 31: 1512–1519.
  • Yokoyama S, Kojima T, Kaga T et al. Increased internal higher-order aberrations as a useful parameter for indication of vitrectomy in three asteroid hyalosis cases. BMJ Case Rep 2015; 2015: bcr2015211704.
  • Chen M, Yoon G. Posterior corneal aberrations and their compensation effects on anterior corneal aberrations in keratoconic eyes. Invest Ophthalmol Vis Sci 2008; 49: 5645–5652.
  • Atchison DA, Markwell EL. Aberrations of emmetropic subjects at different ages. Vision Res 2008; 48: 2224–2231.
  • Lopez-Gil N, Fernandez-Sanchez V. The change of spherical aberration during accommodation and its effect on the accommodation response. J Vis 2010; 10: 12.
  • Pelli DG, Bex P. Measuring contrast sensitivity. Vision Res 2013; 90: 10–14.
  • Brown B, Lovie-Kitchin JE. High and low contrast acuity and clinical contrast sensitivity tested in a normal population. Optom Vis Sci 1989; 66: 467–473.
  • Ostadimoghaddam H, Fotouhi A, Hashemi H et al. Normal range of Cambridge low contrast test; a population based study. J Ophthalmic Vis Res 2014; 9: 65–70.
  • Pesudovs K, Hazel CA, Doran RM et al. The usefulness of Vistech and FACT contrast sensitivity charts for cataract and refractive surgery outcomes research. Br J Ophthalmol 2004; 88: 11–16.
  • Thayaparan K, Crossland MD, Rubin GS. Clinical assessment of two new contrast sensitivity charts. Br J Ophthalmol 2007; 91: 749–752.
  • Dorr M, Lesmes LA, Elze T et al. Evaluation of the precision of contrast sensitivity function assessment on a tablet device. Sci Rep 2017; 7: 46706.
  • McCormick GJ, Porter J, Cox IG et al. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery. Ophthalmology 2005; 112: 1699–1709.
  • Paik DW, Park JS, Yang CM et al. Comparing the visual outcome, visual quality, and satisfaction among three types of multi-focal intraocular lenses. Sci Rep 2020; 10: 14832.
  • Lackner B, Pieh S, Schmidinger G et al. Glare and halo phenomena after laser in situ keratomileusis. J Cataract Refract Surg 2003; 29: 444–450.
  • Giers BC, Khoramnia R, Varadi D et al. Functional results and photic phenomena with new extended-depth-of-focus intraocular lens. BMC Ophthalmol 2019; 19: 197.
  • Kohnen T, Allen D, Boureau C et al. European multicenter study of the AcrySof ReSTOR apodized diffractive intraocular lens. Ophthalmology 2006; 113: 584 e581.
  • Aslam TM, Dhillon B, Tallentire VR et al. Development of a forced choice photographic questionnaire for photic phenomena and its testing - repeatability, reliability and validity. Ophthalmologica 2004; 218: 402–410.
  • Aslam TM, Gilmour D, Hopkinson S et al. The development and assessment of a self-perceived quality of vision questionnaire to test pseudophakic patients. Ophthalmic Epidemiol 2004; 11: 241–253.
  • Buckhurst PJ, Naroo SA, Davies LN et al. Assessment of dysphotopsia in pseudophakic subjects with multifocal intraocular lenses. BMJ Open Ophthalmol 2017; 1: e000064.
  • Moshirfar M. Spherical aberration of intraocular lenses. J Ophthalmic Vis Res 2010; 5: 215–216.
  • Rocha KM, Soriano ES, Chamon W et al. Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: a prospective randomized study. Ophthalmology 2007; 114: 2050–2054.
  • Munoz G, Albarran-Diego C, Montes-Mico R et al. Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens. J Cataract Refract Surg 2006; 32: 1320–1327.
  • Nanavaty MA, Spalton DJ, Boyce J et al. Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study. J Cataract Refract Surg 2009; 35: 663–671.
  • Johansson B, Sundelin S, Wikberg-Matsson A et al. Visual and optical performance of the Akreos adapt advanced optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study. J Cataract Refract Surg 2007; 33: 1565–1572.
  • Rajabi MT, Korouji S, Farjadnia M et al. Higher order aberration comparison between two aspherical intraocular lenses: undefined6125AS and Akreos advanced optics. Int J Ophthalmol 2015; 8: 565–568.
  • Lee KM, Park SH, Joo CK. Comparison of clinical outcomes with three different aspheric intraocular lenses. Acta Ophthalmol 2011; 89: 40–46.
  • Greve D, Bertelmann E, Pilger D et al. Visual outcome and optical quality of a wavefront-engineered extended depth-of-focus intraocular lens. J Cataract Refract Surg 2021; 47: 1139–1146.
  • Song X, Liu X, Wang W et al. Visual outcome and optical quality after implantation of zonal refractive multifocal and extended-range-of-vision IOLs: a prospective comparison. J Cataract Refract Surg 2020; 46: 540–548.
  • Kim CY, Chung SH, Kim TI et al. Comparison of higher-order aberration and contrast sensitivity in monofocal and multifocal intraocular lenses. Yonsei Med J 2007; 48: 627–633.
  • Jun I, Choi YJ, Kim EK et al. Internal spherical aberration by ray tracing-type aberrometry in multifocal pseudophakic eyes. Eye (Lond) 2012; 26: 1243–1248.
  • de Santhiago MR, Netto MV, Barreto J Jr. et al. A contralateral eye study comparing apodized diffractive and full diffractive lenses: wavefront analysis and distance and near uncorrected visual acuity. Clinics (Sao Paulo) 2009; 64: 953–960.
  • Santhiago MR, Netto MV, Barreto J et al. Wavefront analysis and modulation transfer function of three multifocal intraocular lenses. Indian J Ophthalmol 2010; 58: 109–113.
  • Chaves MA, Hida WT, Tzeliks PF et al. Comparative study on optical performance and visual outcomes between two diffractive multifocal lenses: AMO Tecnis (R) ZMB00 and AcrySof (R) IQ ReSTOR (R) multifocal IOL SN6AD1. Arq Bras Oftalmol 2016; 79: 171–176.
  • Jung NY, Lim DH, Hwang SS et al. Comparison of clinical outcomes of toric intraocular lens, Precizon vs Tecnis: a single center randomized controlled trial. BMC Ophthalmol 2018; 18: 292.
  • Ferreira TB, Almeida A. Comparison of the visual outcomes and OPD-scan results of AMO Tecnis toric and Alcon AcrySof IQ toric intraocular lenses. J Refract Surg 2012; 28: 551–555.
  • Scialdone A, De Gaetano F, Monaco G. Visual performance of 2 aspheric toric intraocular lenses: comparative study. J Cataract Refract Surg 2013; 39: 906–914.
  • Guirao A, Tejedor J, Artal P. Corneal aberrations before and after small-incision cataract surgery. Invest Ophthalmol Vis Sci 2004; 45: 4312–4319.
  • Smith G, Cox MJ, Calver R et al. The spherical aberration of the crystalline lens of the human eye. Vision Res 2001; 41: 235–243.
  • Kohnen T, Klaproth OK. Aspheric intraocular lenses. Ophthalmologe 2008; 105: 234–240.
  • Montes-Mico R, Ferrer-Blasco T, Cervino A. Analysis of the possible benefits of aspheric intraocular lenses: review of the literature. J Cataract Refract Surg 2009; 35: 172–181.
  • Schuster AK, Tesarz J, Vossmerbaeumer U. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis. Ophthalmology 2013; 120: 2166–2175.
  • Munoz G, Albarran-Diego C, Galotto MA et al. Lack of effect of intraocular lens asphericity on visual performance with acrylic intraocular lenses. Eur J Ophthalmol 2011; 21: 723–731.
  • Ohtani S, Miyata K, Samejima T et al. Intraindividual comparison of aspherical and spherical intraocular lenses of same material and platform. Ophthalmology 2009; 116: 896–901.
  • Santhiago MR, Netto MV, Barreto J Jr. et al. Wavefront analysis, contrast sensitivity, and depth of focus after cataract surgery with aspherical intraocular lens implantation. Am J Ophthalmol 2010; 149: 383–389 e381–382.
  • Trueb PR, Albach C, Montes-Mico R et al. Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses. Ophthalmology 2009; 116: 890–895.
  • Semeraro F, Romano MR, Duse S et al. Quality of vision in patients implanted with aspherical and spherical intraocular lens: intraindividual comparison. Indian J Ophthalmol 2014; 62: 461–463.
  • Cuthbertson FM, Dhingra S, Benjamin L. Objective and subjective outcomes in comparing three different aspheric intraocular lens implants with their spherical counterparts. Eye (Lond) 2009; 23: 877–883.
  • Caporossi A, Casprini F, Martone G et al. Contrast sensitivity evaluation of aspheric and spherical intraocular lenses 2 years after implantation. J Refract Surg 2009; 25: 578–590.
  • Morales EL, Rocha KM, Chalita MR et al. Comparison of optical aberrations and contrast sensitivity between aspheric and spherical intraocular lenses. J Refract Surg 2011; 27: 723–728.
  • Schuster AK, Tesarz J, Vossmerbaeumer U. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: systematic review with metaanalysis. J Cataract Refract Surg 2015; 41: 1088–1097.
  • Assaf A, Kotb A. Ocular aberrations and visual performance with an aspheric single-piece intraocular lens: contralateral comparative study. J Cataract Refract Surg 2010; 36: 1536–1542.
  • Wang L, Shoukfeh O, Koch DD. Custom selection of aspheric intraocular lens in eyes with previous hyperopic corneal surgery. J Cataract Refract Surg 2015; 41: 2652–2663.
  • Bonaque-Gonzalez S, Bernal-Molina P, Lopez-Gil N. Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages. J Cataract Refract Surg 2015; 41: 1110–1111.
  • Al-Sayyari TM, Fawzy SM, Al-Saleh AA. Corneal spherical aberration and its impact on choosing an intraocular lens for cataract surgery. Saudi J Ophthalmol 2014; 28: 274–280.
  • Eom Y, Yoo E, Kang SY et al. Change in efficiency of aspheric intraocular lenses based on pupil diameter. Am J Ophthalmol 2013; 155: 492–498 e492.
  • Steinwender G, Strini S, Glatz W et al. Depth of focus after implantation of spherical or aspheric intraocular lenses in hyperopic and emmetropic patients. J Cataract Refract Surg 2017; 43: 1413–1419.
  • MacRae S, Holladay JT, Hilmantel G et al. Special report: American Academy of Ophthalmology Task Force recommendations for specular microscopy for Phakic intraocular lenses. Ophthalmology 2017; 124: 141–142.
  • Kanclerz P, Toto F, Grzybowski A et al. Extended depth-of-field intraocular lenses: an update. Asia Pac J Ophthalmol (Phila) 2020; 9: 194–202.
  • Alio JL, D’Oria F, Toto F et al. Retinal image quality with multifocal, EDoF, and accommodative intraocular lenses as studied by pyramidal aberrometry. Eye Vis (Lond) 2021; 8: 37.
  • Fernandez J, Rodriguez-Vallejo M, Martinez J et al. Pupil diameter in patients with multifocal intraocular lenses. J Refract Surg 2020; 36: 750–756.
  • Salerno LC, Tiveron MC Jr., Alio JL. Multifocal intraocular lenses: types, outcomes, complications and how to solve them. Taiwan J Ophthalmol 2017; 7: 179–184.
  • Hovanesian JA. Patient-reported outcomes of multifocal and accommodating intraocular lenses: analysis of 117 patients 2-10 years after surgery. Clin Ophthalmol 2018; 12: 2297–2304.
  • Wang J, Ren Y, Liang K et al. Changes of corneal high-order aberrations after femtosecond laser-assisted in situ keratomileusis. Medicine (Baltimore) 2018; 97: e0618.
  • O’Brart DP, Gartry DS, Lohmann CP et al. Excimer laser photorefractive keratectomy for myopia: comparison of 4.00- and 5.00-millimeter ablation zones. J Refract Corneal Surg 1994; 10: 87–94.
  • Endl MJ, Martinez CE, Klyce SD et al. Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 2001; 119: 1159–1164.
  • Padmanabhan P, Basuthkar SS, Joseph R. Ocular aberrations after wavefront optimized LASIK for myopia. Indian J Ophthalmol 2010; 58: 307–312.
  • Stonecipher K, Parrish J, Stonecipher M. Comparing wavefront-optimized, wavefront-guided and topography-guided laser vision correction: clinical outcomes using an objective decision tree. Curr Opin Ophthalmol 2018; 29: 277–285.
  • Yeu E, Wang L, Koch DD. The effect of corneal wavefront aberrations on corneal pseudoaccommodation. Am J Ophthalmol 2012; 153: 972–981 e972.
  • Gil-Cazorla R, Shah S, Naroo SA. A review of the surgical options for the correction of presbyopia. Br J Ophthalmol 2016; 100: 62–70.
  • Awwad ST, Sanchez P, Sanchez A et al. A preliminary in vivo assessment of higher-order aberrations induced by a silicone hydrogel monofocal contact lens. Eye Contact Lens 2008; 34: 2–5.
  • Jiang H, Wang D, Yang L et al. A comparison of wavefront aberrations in eyes wearing different types of soft contact lenses. Optom Vis Sci 2006; 83: 769–774.
  • Roberts B, Athappilly G, Tinio B et al. Higher order aberrations induced by soft contact lenses in normal eyes with myopia. Eye Contact Lens 2006; 32: 138–142.
  • Huang X, Wang F, Lin Z et al. Visual quality of juvenile myopes wearing multifocal soft contact lenses. Eye Vis (Lond) 2020; 7: 41.
  • Chamberlain P, Peixoto-de-Matos SC, Logan NS et al. A 3-year randomized clinical trial of misight lenses for myopia control. Optom Vis Sci 2019; 96: 556–567.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.