67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Seasonal variations in anterior segment angle parameters in myopes and emmetropes

, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 530-536 | Received 19 Nov 2022, Accepted 17 Apr 2023, Published online: 26 Sep 2023

References

  • Cheng J, Xiao M, Xu H et al. Seasonal changes of 24-hour intraocular pressure rhythm in healthy Shanghai population. Medicine 2016; 95: e4453. doi:10.1097/MD.0000000000004453.
  • Fujiwara M, Hasebe S, Nakanishi R et al. Seasonal variation in myopia progression and axial elongation: an evaluation of Japanese children participating in a myopia control trial. Jpn J Ophthalmol 2012; 56: 401–406. doi:10.1007/s10384-012-0148-1.
  • Fulk GW, Cyert LA, Parker DA. Seasonal variation in myopia progression and ocular elongation. Optom Vis Sci 2002; 79: 46–51. doi:10.1097/00006324-200201000-00012.
  • Ulaganathan S, Read SA, Collins MJ et al. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes. Exp Eye Res 2019; 189: 107850. doi:10.1016/j.exer.2019.107850.
  • Ulaganathan S, Read SA, Collins MJ et al. Influence of seasons upon personal light exposure and longitudinal axial length changes in young adults. Acta Ophthalmol 2019; 97: e256–e265. doi:10.1111/aos.13904.
  • Rahman R, Ikram K, Rosen PH et al. Do climatic variables influence the development of posterior vitreous detachment? Br J Ophthalmol 2002; 86: 829. doi:10.1136/bjo.86.7.829.
  • Hu C-C, Lin H-C, Chen C-S. A 7-year population study of primary angle closure glaucoma admissions and climate in Taiwan. Ophthalmic Epidemiol 2008; 15: 66–72. doi:10.1080/09286580701771997.
  • French AN, Ashby RS, Morgan IG et al. Time outdoors and the prevention of myopia. Exp Eye Res 2013; 114: 58–68. doi:10.1016/j.exer.2013.04.018.
  • Guggenheim JA, Northstone K, McMahon G et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Visual Sci 2012; 53: 2856–2865. doi:10.1167/iovs.11-9091.
  • Guo Y, Liu LJ, Xu L et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology 2013; 120: 277–283. doi:10.1016/j.ophtha.2012.07.086.
  • Cui D, Trier K, Munk Ribel-Madsen S. Effect of day length on eye growth, myopia progression, and change of corneal power in myopic children. Ophthalmology 2013; 120: 1074–1079. doi:10.1016/j.ophtha.2012.10.022.
  • Donovan L, Sankaridurg P, Ho A et al. Myopia progression in Chinese children is slower in summer than in winter. Optom Vis Sci 2012; 89: 1196–1202. doi:10.1097/OPX.0b013e3182640996.
  • Gwiazda J, Deng L, Manny R et al. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Visual Sci 2014; 55: 752–758. doi:10.1167/iovs.13-13029.
  • Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Visual Sci 2015; 56: 6779–6787. doi:10.1167/iovs.14-15978.
  • Gardiner SK, Demirel S, Gordon MO et al. Seasonal changes in visual field sensitivity and intraocular pressure in the ocular hypertension treatment study. Ophthalmology 2013; 120: 724–730. doi:10.1016/j.ophtha.2012.09.056.
  • Qureshi IA, Xi XR, Lu HJ et al. Effect of seasons upon intraocular pressure in healthy population of China. Korean J Ophthalmol 1996; 10: 29–33. doi:10.3341/kjo.1996.10.1.29.
  • Hillman JS, Turner JD. Association between acute glaucoma and the weather and sunspot activity. Br J Ophthalmol 1977; 61: 512–516. doi:10.1136/bjo.61.8.512.
  • Teikari J, Raivio I, Nurminen M. Incidence of acute glaucoma in Finland from 1973 to 1982. Graefes Arch Clin Exp Ophthalmol 1987; 225: 357–360. doi:10.1007/BF02153405.
  • Han X, Yang T, Zhang J et al. Longitudinal changes in intraocular pressure and association with systemic factors and refractive error: Lingtou Eye Cohort Study. BMJ Open 2018; 8: e019416. doi:10.1136/bmjopen-2017-019416.
  • Ma D, Wei S, Sun Y et al. Distribution of IOP and its relationship with refractive error and other factors: the Anyang University Students Eye Study. Int J Ophthalmol 2021; 14: 554–559. doi:10.18240/ijo.2021.04.12.
  • Nomura H, Ando F, Niino N et al. The relationship between intraocular pressure and refractive error adjusting for age and central corneal thickness. Ophthalmic Physiol Opt 2004; 24: 41–45. doi:10.1046/j.1475-1313.2003.00158.x.
  • Lee AJ, Saw SM, Gazzard G et al. Intraocular pressure associations with refractive error and axial length in children. Br J Ophthalmol 2004; 88: 5–7. doi:10.1136/bjo.88.1.5.
  • Manny RE, Deng L, Crossnoe C et al. IOP, myopic progression and axial length in a COMET subgroup. Optom Vis Sci 2008; 85: 97–105. doi:10.1097/OPX.0b013e3181622633.
  • Memarzadeh F, Ying-Lai M, Azen SP et al. Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye Study. Am J Ophthalmol 2008; 146: 69–76. doi:10.1016/j.ajo.2008.03.015.
  • Ayaki M, Negishi K, Yuki K et al. Tear break-up time and seasonal variation in intraocular pressure in a Japanese population. Diagnostics 2020; 10: 124. doi:10.3390/diagnostics10020124.
  • Hosny M, Alió JL, Claramonte P et al. Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J Refract Surg 2000; 16: 336–340. doi:10.3928/1081-597X-20000501-07.
  • Moghadas Sharif N, Shoeibi N, Heydari M et al. Effect of cyclopentolate versus tropicamide on anterior segment angle parameters in three refractive groups. Clin Exp Optom 2021; 104: 151–155. doi:10.1111/cxo.13103.
  • Orucoglu F, Akman M, Onal S. Analysis of age, refractive error and gender related changes of the cornea and the anterior segment of the eye with Scheimpflug imaging. Cont Lens Anterior Eye 2015; 38: 345–350. doi:10.1016/j.clae.2015.03.009.
  • Xu L, Cao WF, Wang YX et al. Anterior chamber depth and chamber angle and their associations with ocular and general parameters: the Beijing Eye Study. Am J Ophthalmol 2008; 145: 929–936. doi:10.1016/j.ajo.2008.01.004.
  • Jones LA, Sinnott LT, Mutti DO et al. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Visual Sci 2007; 48: 3524–3532. doi:10.1167/iovs.06-1118.
  • Rose KA, Morgan IG, Ip J et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008; 115: 1279–1285. doi:10.1016/j.ophtha.2007.12.019.
  • Rose KA, Morgan IG, Smith W et al. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol 2008; 126: 527–530. doi:10.1001/archopht.126.4.527.
  • Adhikari A, Shet RV, Mandal R et al. Variations in intraocular pressure during different phases of menstrual cycle. J Ophthalmol Res 2021; 4: 183–191. doi:10.26502/fjor.2644-00240036.
  • Giuffrè G, Di Rosa L, Fiorino F et al. Variations in central corneal thickness during the menstrual cycle in women. Cornea 2007; 26: 144–146. doi:10.1097/01.ico.0000244873.08127.3c.
  • Goldich Y, Barkana Y, Pras E et al. Variations in corneal biomechanical parameters and central corneal thickness during the menstrual cycle. J Cataract Refract Surg 2011; 37: 1507–1511. doi:10.1016/j.jcrs.2011.03.038.
  • Ulaş F, Doğan U, Duran B et al. Choroidal thickness changes during the menstrual cycle. Curr Eye Res 2013; 38: 1172–1181. doi:10.3109/02713683.2013.811258.
  • Versura P, Fresina M, Campos EC. Ocular surface changes over the menstrual cycle in women with and without dry eye. Gynecol Endocrinol 2007; 23: 385–390. doi:10.1080/09513590701350390.
  • Akil H, Dastiridou A, Marion K et al. Effects of diurnal, lighting, and angle-of-incidence variation on anterior segment optical coherence tomography (AS-OCT) angle metrics. BMC Ophthalmol 2017; 17: 31. doi:10.1186/s12886-017-0425-3.
  • Read SA, Collins MJ. Diurnal variation of corneal shape and thickness. Optom Vis Sci 2009; 86: 170–180. doi:10.1097/OPX.0b013e3181981b7e.
  • Xu BY, Penteado RC, Weinreb RN. Diurnal variation of optical coherence tomography measurements of static and dynamic anterior segment parameters. J Glaucoma 2018; 27: 16–21. doi:10.1097/IJG.0000000000000832.
  • Wylęgała A, Mazur R, Bolek B et al. Reproducibility, and repeatability of corneal topography measured by Revo NX, Galilei G6 and Casia 2 in normal eyes. PLoS One 2020; 15: e0230589. doi:10.1371/journal.pone.0230589.
  • Liu S, Yu M, Ye C et al. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Visual Sci 2011; 52: 8598–8603. doi:10.1167/iovs.11-7507.
  • Leung CK, Weinreb RN. Anterior chamber angle imaging with optical coherence tomography. Eye 2011; 25: 261–267. doi:10.1038/eye.2010.201.
  • Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol 2009; 37: 81–89. doi:10.1111/j.1442-9071.2008.01823.x.
  • Zong Y, Xu Q, Jiang C et al. Measurement of and factors associated with the anterior chamber volume in healthy Chinese adults. J Ophthalmol 2017; 2017: 1–6. doi:10.1155/2017/6762047.
  • Wang P, Chen S, Liu Y et al. Lowering intraocular pressure: a potential approach for controlling high myopia progression. Invest Ophthalmol Visual Sci 2021; 62: 17. doi:10.1167/iovs.62.14.17.
  • Zhang D, Wang L, Jin L et al. A review of intraocular pressure (IOP) and axial myopia. J Ophthalmol 2022; 2022: 1–10. doi:10.1155/2022/5626479.
  • Lusthaus JA, Khatib TZ, Meyer PA et al. Aqueous outflow imaging techniques and what they tell us about intraocular pressure regulation. Eye 2021; 35: 216–235. doi:10.1038/s41433-020-01136-y.
  • Sun JH, Sung KR, Yun SC et al. Factors associated with anterior chamber narrowing with age: an optical coherence tomography study. Invest Ophthalmol Visual Sci 2012; 53: 2607–2610. doi:10.1167/iovs.11-9359.
  • Teikari JM, O’Donnell J, Nurminen M et al. Acute closed angle glaucoma and sunshine. J Epidemiol Commun Health 1991; 45: 291–293. doi:10.1136/jech.45.4.291.
  • Yang MC, Lin KY. Drug-induced acute angle-closure glaucoma: a review. J Curr Glaucoma Pract 2019; 13: 104–109. doi:10.5005/jp-journals-10078-1261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.