703
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Understanding and identifying visual field progression

ORCID Icon & ORCID Icon
Pages 122-129 | Received 26 May 2023, Accepted 02 Feb 2024, Published online: 11 Mar 2024

References

  • European glaucoma society terminology and guidelines for glaucoma, 5th edition. Br J Ophthalmol 2021; 105: 1–169. doi:10.1136/bjophthalmol-2021-egsguidelines.
  • National Health and Medical Research Council. NHMRC guidelines for the screening, prognosis, diagnosis, management and prevention of glaucoma 2010. Canberra, ACT: National Health and Medical Research Council; 2010.
  • Artes PH, Iwase A, Ohno Y et al. Properties of perimetric threshold estimates from full threshold, SITA standard, and SITA fast strategies. Invest Ophthalmol Vis Sci 2002; 43: 2654–2659.
  • Heeg GP, Ponsioen TL, Jansonius NM. Learning effect, normal range, and test-retest variability of frequency doubling perimetry as a function of age, perimetric experience, and the presence or absence of glaucoma. Ophthalm Physiol Opt 2003; 23: 535–540. doi:10.1046/j.1475-1313.2003.00149.x.
  • Rubinstein NJ, Turpin A, Denniss J et al. Effects of criterion bias on perimetric sensitivity and response variability in glaucoma. Transl Vis Sci Technol 2021; 10: 18. doi:10.1167/tvst.10.1.18.
  • Gardiner SK, Swanson WH, Mansberger SL. Long- and short-term variability of perimetry in glaucoma. Transl Vis Sci Technol 2022; 11: 3. doi:10.1167/tvst.11.8.3.
  • Kutzko KE, Brito CF, Wall M. Effect of instructions on conventional automated perimetry. Invest Ophthalmol Vis Sci 2000; 41: 2006–2013.
  • Turpin A, McKendrick AM, Johnson CA et al. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. Invest Ophthalmol Vis Sci 2003; 43: 4787–4795. doi:10.1167/iovs.03-0023.
  • Glen FC, Baker H, Crabb DP. A qualitative investigation into patients’ views on visual field testing for glaucoma monitoring. BMJ Open 2014; 4: e003996. doi:10.1136/bmjopen-2013-003996.
  • Muthusamy V, Turpin A, Nguyen BN et al. Patients’ views of visual field testing and priorities for research development and translation into practice. Ophthalmol Glauc 2022; 5: 313–324. doi:10.1016/j.ogla.2021.10.003.
  • McKendrick AM, Zeman A, Liu P et al. Robot assistants for perimetry: a study of patient experience and performance. Transl Vis Sci Technol 2019; 8: 59. doi:10.1167/tvst.8.3.59.
  • Heijl A, Patella VM, Chong LX et al. A new SITA perimetric threshold testing algorithm: construction and a multicenter clinical ctudy. Am J Ophthalmol 2019; 198: 154–165. doi:10.1016/j.ajo.2018.10.010.
  • Bengtsson B, Olsson J, Heijl A et al. A new generation of algorithms for computerized threshold perimetry. SITA. Acta Ophthalmol Scand 1997; 75: 368–375. doi:10.1111/j.1600-0420.1997.tb00392.x.
  • Gardiner SK, Swanson WH, Demirel S. The effect of limiting the range of perimetric sensitivities on pointwise assessment of visual field progression in glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 288–294. doi:10.1167/iovs.15-18000.
  • Pathak M, Demirel S, Gardiner SK. Reducing variability of perimetric global indices from eyes with progressive glaucoma by censoring unreliable sensitivity data. Transl Vis Sci Technol 2017; 6: 11. doi:10.1167/tvst.6.4.11.
  • Anderson DR, Patella VM. Automated static perimetry. 2nd ed. St Louis, Missouri: Mosby; 1999.
  • Wild D, Kucur SS, Sznitman R. Spatial entropy pursuit for fast and accurate perimetry testing. Invest Ophthalmol Vis Sci 2017; 58: 3414–3424. doi:10.1167/iovs.16-21144.
  • Rubinstein NJ, McKendrick AM, Turpin A. Incorporating spatial models in visual field test procedures. Transl Vis Sci Technol 2016; 5: 7. doi:10.1167/tvst.5.2.7.
  • Turpin A, McKendrick AM. A method for reducing the number of presentations in perimetric test procedures. Transl Vis Sci Technol 2022; 11: 14. doi:10.1167/tvst.11.4.14.
  • Olsson J, Rootzén H. An image model for quantal response analysis in perimetry. Scand J Stat 1994; 21: 375–387.
  • Budenz DL, Rhee P, Feuer WJ et al. Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects. Ophthalmology 2002; 109: 1052–1058. doi:10.1016/S0161-6420(02)01047-3.
  • Liu P, Nguyen BN, Turpin A et al. Increased depth, reduced extent, and sharpened edges of visual field defects measured by compass fundus perimeter compared to Humphrey field Analyzer. Transl Vis Sci Technol 2021; 10: 33. doi:10.1167/tvst.10.12.33.
  • Numata T, Maddess T, Matsumoto C et al. Exploring test-retest variability using high-resolution perimetry. Transl Vis Sci Technol 2017; 6: 8. doi:10.1167/tvst.6.5.8.
  • Maddess T. Modeling the relative influence of fixation and sampling errors on retest variability in perimetry. Graefe’s Arch Clin Exp Ophthalmol 2014; 252: 1611–1619. doi:10.1007/s00417-014-2751-y.
  • Viswanathan AC, Crabb DP, McNaught AI et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol 2003; 87: 726–730. doi:10.1136/bjo.87.6.726.
  • Lin AP, Katz LJ, Spaeth GL et al. Agreement of visual field interpretation among glaucoma specialists and comprehensive ophthalmologists: comparison of time and methods. Br J Ophthalmol 2011; 95: 828–831. doi:10.1136/bjo.2010.186569.
  • Tanna AP, Bandi JR, Budenz DL et al. Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. Ophthalmology 2011; 118: 60–65. doi:10.1016/j.ophtha.2010.04.038.
  • Heijl A, Leske MC, Bengtsson B et al. Measuring visual field progression in the early manifest glaucoma trial. Acta Ophthalmol Scand 2003; 81: 286–293. doi:10.1034/j.1600-0420.2003.00070.x.
  • Bengtsson B, Lindgren A, Heijl A et al. Perimetric probability maps to separate change caused by glaucoma from that caused by cataract. Acta Ophthalmol Scand 1997; 75: 184–188. doi:10.1111/j.1600-0420.1997.tb00121.x.
  • Turpin A, McKendrick AM. Observer-based rather than population-based confidence limits for determining probability of change in visual fields. Vision Res 2005; 45: 3277–3289. doi:10.1016/j.visres.2005.08.012.
  • Vesti E, Johnson CA, Chauhan BC. Comparison of different methods for detecting glaucomatous visual field progression. Invest Ophthalmol Vis Sci 2003; 44: 3873–3879. doi:10.1167/iovs.02-1171.
  • Rao HL, Kumbar T, Kumar AU et al. Agreement between event-based and trend-based glaucoma progression analyses. Eye 2013; 27: 803–808. doi:10.1038/eye.2013.77.
  • Saeedi OJ, Elze T, D’Acunto L et al. Agreement and predictors of discordance of 6 visual field progression algorithms. Ophthalmology 2019; 126: 822–828. doi:10.1016/j.ophtha.2019.01.029.
  • Racette L, Fischer M, Bebie H et al. Visual field digest: a guide to perimetry and the Octopus perimeter. 6th ed. Haag-Streit AG; 2016.
  • Gardiner SK, Mansberger SL, Demirel S. Detection of functional change using cluster trend analysis in glaucoma. Invest Ophthalmol Vis Sci 2017; 58: BIO180–BIO190. doi:10.1167/iovs.17-21562.
  • Aoki S, Murata H, Fujino Y et al. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma. Brit J Ophthal 2017; 101: 1658–1665. doi:10.1136/bjophthalmol-2016-310069.
  • Spry PG, Bates AB, Johnson CA et al. Simulation of longitudinal threshold visual field data. Invest Ophthalmol Vis Sci 2000; 41: 2192–2200.
  • Wu Z, Medeiros FA. Comparison of visual field point-wise event-based and global trend-based analysis for detecting glaucomatous progression. Transl Vis Sci Technol 2018; 7: 20. doi:10.1167/tvst.7.4.20.
  • Nassiri N, Moghimi S, Coleman AL et al. Global and pointwise rates of decay in glaucoma eyes deteriorating according to pointwise event analysis. Invest Ophthalmol Vis Sci 2013; 54: 1208–1213. doi:10.1167/iovs.12-10833.
  • Nouri-Mahdavi K, Caprioli J, Coleman AL et al. Pointwise linear regression for evaluation of visual field outcomes and comparison with the advanced glaucoma intervention study methods. Arch Ophthalmol 2005; 123: 193–199. doi:10.1001/archopht.123.2.193.
  • Montesano G, Garway-Heath DF, Ometto G et al. Hierarchical censored bayesian analysis of visual field progression. Transl Vis Sci Technol 2021; 10: 4. doi:10.1167/tvst.10.12.4.
  • Azarbod P, Mock D, Bitrian E et al. Validation of point-wise exponential regression to measure the decay rates of glaucomatous visual fields. Invest Ophthalmol Vis Sci 2012; 53: 5403–5409. doi:10.1167/iovs.12-9930.
  • Caprioli J, Mohamed L, Morales E et al. A method to measure the rate of glaucomatous visual field change. Transl Vis Sci Technol 2018; 7: 14. doi:10.1167/tvst.7.6.14.
  • Bryan SR, Eilers PH, Lesaffre EM et al. Global visit effects in point-wise longitudinal modeling of glaucomatous visual fields. Invest Ophthalmol Vis Sci 2015; 56: 4283–4289. doi:10.1167/iovs.15-16691.
  • Zhu H, Russell RA, Saunders LJ et al. Detecting changes in retinal function: analysis with non-stationary weibull error regression and spatial enhancement (ANSWERS). PLoS One 2014; 9: e85654. doi:10.1371/journal.pone.0085654.
  • Betz-Stablein BD, Morgan WH, House PH et al. Spatial modeling of visual field data for assessing glaucoma progression. Invest Ophthalmol Vis Sci 2013; 54: 1544–1553. doi:10.1167/iovs.12-11226.
  • Keltner JL, Johnson CA, Cello KE et al. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol 2003; 121: 643–650. doi:10.1001/archopht.121.5.643.
  • Elze T, Pasquale LR, Shen LQ et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface 2015; 12: 12. doi:10.1098/rsif.2014.1118.
  • Wang M, Shen LQ, Pasquale LR et al. An artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis. Invest Ophthalmol Vis Sci 2019; 60: 365–375. doi:10.1167/iovs.18-25568.
  • Yousefi S, Balasubramanian M, Goldbaum MH et al. Unsupervised Gaussian Mixture-Model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields. Transl Vis Sci Technol 2016; 5: 2–2. doi:10.1167/tvst.5.3.2.
  • Maya S, Morino K, Murata H et al. Discovery of glaucoma progressive patterns using hierarchical MDL-Based clustering. KDD ’15: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015.
  • Berchuck SI, Mwanza J-C, Tanna AP et al. Improved detection of visual field progression using a spatiotemporal boundary detection method. Sci Rep 2019; 9: 4642. doi:10.1038/s41598-018-37127-z.
  • Murata H, Araie M, Asaoka R. A new approach to measure visual field progression in glaucoma patients using variational bayes linear regression. Invest Ophthalmol Vis Sci 2014; 55: 8386–8392. doi:10.1167/iovs.14-14625.
  • Russell RA, Garway-Heath DF, Crabb DP et al. New insights into measurement variability in glaucomatous visual fields from computer modelling. PLoS One 2013; 8: e83595. doi:10.1371/journal.pone.0083595.
  • Chen A, Nouri-Mahdavi K, Otarola FJ et al. Models of glaucomatous visual field loss. Invest Ophthalmol Vis Sci 2014; 55: 7881–7887. doi:10.1167/iovs.14-15435.
  • Swaminathan SS, Berchuck SI, Jammal AA et al. Rates of glaucoma progression derived from linear mixed models using varied random effect distributions. Transl Vis Sci Technol 2022; 11: 16. doi:10.1167/tvst.11.2.16.
  • O’Leary N, Chauhan BC, Artes PH. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR). Invest Ophthalmol Vis Sci 2012; 53: 6776–6784. doi:10.1167/iovs.12-10049.
  • Zhu H, Crabb DP, Ho T et al. More accurate modeling of visual field progression in glaucoma: ANSWERS. Invest Ophthalmol Vis Sci 2015; 56: 6077–6083. doi:10.1167/iovs.15-16957.
  • Marín-Franch I, Artes PH, Turpin A et al. Visual field progression in glaucoma: comparison between PoPLR and ANSWERS. Transl Vis Sci Technol 2021; 10: 13. doi:10.1167/tvst.10.14.13.
  • Karakawa A, Murata H, Hirasawa H et al. Detection of progression of glaucomatous visual field damage uing the point-wise method with the binomial test. PLoS One 2013; 8: e78630. doi:10.1371/journal.pone.0078630.
  • Medeiros FA, Weinreb RN, Moore G et al. Integrating event and trend-based analyses to improve detection of glaucomatous visual field progression. Ophthalmology 2012; 119: 458–467. doi:10.1016/j.ophtha.2011.10.003.
  • Thompson AC, Jammal AA, Medeiros FA. A review of deep learning for screening, diagnosis, and detection of glaucoma progression. Transl Vis Sci Technol 2020; 9: 42. doi:10.1167/tvst.9.2.42.
  • Turpin A, Sampson GP, McKendrick AM. Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map. Invest Ophthalmol Vis Sci 2009; 50: 3249–3256. doi:10.1167/iovs.08-2492.
  • Phu J, Kalloniatis M. Comparison of 10-2 and 24-2C test grids for identifying central visual field defects in glaucoma and suspect patients. Ophthalmology 2021; 128: 1405–1416. doi:10.1016/j.ophtha.2021.03.014.
  • El-Nimri NW, Penteado RC, Bowd C et al. Agreement between compass fundus perimeter new grid and 10-2 testing protocols for detecting central visual field defects. Ophthalmol Glaucoma 2022; 5: 179–187. doi:10.1016/j.ogla.2021.07.006.
  • Muthusamy V, Turpin A, Walland MJ et al. Increasing the spatial resolution of visual field tests without increasing test duration: an evaluation of ARREST. Transl Vis Sci Technol 2020; 9: 24. doi:10.1167/tvst.9.13.24.
  • Turpin A, Morgan WH, McKendrick AM. Improving spatial resolution and test times of visual field testing using ARREST. Transl Vis Sci Technol 2018; 7: 35. doi:10.1167/tvst.7.5.35.
  • Chong LX, Turpin A, McKendrick AM. Targeted spatial sampling using GOANNA improves detection of visual field progression. Ophthalm Physiol Opt 2015; 35: 155–169. doi:10.1111/opo.12184.
  • Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 2017; 57: 46–75. doi:10.1016/j.preteyeres.2016.12.002.
  • Wu Z, Medeiros FA, Weinreb RN et al. Comparing 10-2 and 24-2 visual fields for detecting progressive central visual loss in glaucoma eyes with early central abnormalities. Ophthalmol Glaucoma 2019; 2: 95–102. doi:10.1016/j.ogla.2019.01.003.
  • Rao HL, Begum VU, Khadka D et al. Comparing glaucoma progression on 24-2 and 10-2 visual field examinations. PLoS One 2015; 10: e0127233. doi:10.1371/journal.pone.0127233.
  • Sullivan-Mee M, Kimura B, Kee H et al. Baseline 10-2 visual field loss as a predictor for future glaucoma progression. J Glaucoma 2023; 32: 1–8. doi:10.1097/IJG.0000000000002138.
  • Swanson WH. Stimulus size for perimetry in patients with glaucoma. Invest Ophthalmol Vis Sci 2013; 54: 3984. doi:10.1167/iovs.13-12335.
  • Wall M, Zamba GKD, Artes PH. The effective dynamic ranges for glaucomatous visual field progression with standard automated perimetry and stimulus sizes III and V. Invest Ophthalmol Vis Sci 2018; 59: 439–445. doi:10.1167/iovs.17-22390.
  • Rountree L, Mulholland PJ, Anderson RS et al. Optimising the glaucoma signal/noise ratio by mapping changes in spatial summation with area-modulated perimetric stimuli. Sci Rep 2018; 8: 2172. doi:10.1038/s41598-018-20480-4.
  • Bek T, Lund-Andersen H. The influence of stimulus size on perimetric detection of small scotomata. Graefes Arch Clin Exp Ophthalmol 1989; 227: 531–534. doi:10.1007/BF02169446.
  • Atchison DA. Effect of defocus on visual field measurement. Ophthalm Physiol Opt 1987; 7: 259–265. doi:10.1111/j.1475-1313.1987.tb00743.x.
  • Phu J, Khuu SK, Bui BV et al. A method using Goldmann stimulus sizes I to V-measured sensitivities to predict lead time gained to visual field defect detection in early glaucoma. Transl Vis Sci Technol 2018; 7: 17. doi:10.1167/tvst.7.3.17.
  • Wall M, Kutzko KE, Chauhan BC. Variability in patients with glaucomatous visual field damage is reduced using size V stimuli. Invest Ophthalmol Vis Sci 1997; 38: 426–435.
  • Chauhan BC, Garway-Heath DF, Goni FJ et al. Practical recommendations for measuring rates of visual field change in glaucoma. Brit J Ophthalmol 2008; 92: 569–573. doi:10.1136/bjo.2007.135012.
  • Anderson AJ. Significant glaucomatous visual field progression in the first two years: what does it mean? Transl Vis Sci Technol 2016; 5: 1. doi:10.1167/tvst.5.6.1.
  • García Caride S, Sáenz-Francés San Baldomero F, Morales Fernández L et al. Basal evaluation and rates of progression based on visual fields in six different glaucoma types of a large population. Eur J Ophthalmol 2023; 11206721231173172. doi:10.1177/11206721231173172.
  • Anderson AJ, Chaurasia AK, Sharma A et al. Comparison of rates of fast and catastrophic visual field loss in three glaucoma subtypes. Invest Ophthalmol Vis Sci 2019; 60: 161–167. doi:10.1167/iovs.18-25391.
  • Jackson AB, Martin KR, Coote MA et al. Fast progressors in glaucoma: prevalence based on global and central visual field loss. Ophthalmology 2023; 130: 462–468. doi:10.1016/j.ophtha.2023.01.008.
  • Phu J, Kalloniatis M. Viability of performing multiple 24-2 visual field examinations at the same clinical visit: the frontloading fields study (FFS). Am J Ophthalmol 2021; 230: 48–59. doi:10.1016/j.ajo.2021.04.019.
  • Phu J, Kalloniatis M. Patient and technician perspectives following the introduction of frontloaded visual field testing in glaucoma assessment. Clin Exp Optom 2021; 1–7. doi:10.1080/08164622.2021.1965461.
  • Anderson AJ, Bedggood PA, George Kong YX et al. Can home monitoring allow earlier detection of rapid visual field progression in glaucoma? Ophthalmology 2017; 124: 1735–1742. doi:10.1016/j.ophtha.2017.06.028.
  • McKendrick AM, Denniss J, Turpin A. Response times across the visual field: empirical observations and application to threshold determination. Vision Res 2014; 101: 1–10. doi:10.1016/j.visres.2014.04.013.
  • Pham AT, Ramulu PY, Boland MV et al. The effect of transitioning from SITA standard to SITA faster on visual field performance. Ophthalmology 2021; 128: 1417–1425. doi:10.1016/j.ophtha.2021.03.032.
  • Turpin A, McKendrick AM. Improving personalized structure to function mapping from optic nerve head to visual field. Transl Vis Sci Technol 2021; 10: 19. doi:10.1167/tvst.10.1.19.
  • Moghimi S, Bowd C, Zangwill LM et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 2019; 126: 980–988. doi:10.1016/j.ophtha.2019.03.003.
  • Marín-Franch I, Turpin A, Artes PH et al. The open perimetry initiative: a framework for cross-platform development for the new generation of portable perimeters. J Vis 2022; 22: 1. doi:10.1167/jov.22.5.1.