Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 47, 2018 - Issue 5
102
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Potential Role of PTPN-22 C1858T Gene Polymorphism in the Pathogenesis of Type 1 Diabetes in Saudi Population

, , , , , & ORCID Icon show all

References

  • Abbasi F, Soltani S, Saghazadeh A, et al. (2017). PTPN22 single-nucleotide polymorphisms in Iranian patients with type 1 diabetes mellitus. Immunol Invest, 46, 409–418. doi:10.1080/08820139.2017.1288239.
  • Abdelrahman HM, Sherief LM, Abd Elrahman DM, et al. (2016). The association of PTPN22 (rs2476601) and IL2RA (rs11594656) polymorphisms with T1D in Egyptian children. Hum Immunol, 77, 682–686. doi:10.1016/j.humimm.2016.06.006.
  • Allam G, Nasr A, Talaat IM, et al. (2017). Association between cytokine genes polymorphisms and type 1 diabetes: a case-control study on Saudi population. Immunol Invest, 1–12. doi:10.1080/08820139.2017.1416398.
  • Almasi S, Aliparasti MR, Yazdchi-Marandi L, et al. (2014). Analysis of PTPN22 C1858T gene polymorphism in cases with type 1 diabetes of Azerbaijan, Northwest Iran. Cell Immunol, 292, 14–18. doi:10.1016/j.cellimm.2014.08.007.
  • American Diabetes Association. (2015). Classification and diagnosis of diabetes. Diabetes Care, 38, S8–S16. doi:10.2337/dc15-S005.
  • Atkinson MA, Eisenbarth GS, Michels AW. (2014). Type 1 diabetes. Lancet, 383, 69–82. doi:10.1016/S0140-6736(13)60591-7.
  • Baniasadi V, Das SN. (2008). No evidence for association of PTPN22 R620W functional variant C1858T with type 1 diabetes in Asian Indians. J Cell Mol Med, 12, 1061–1062. doi:10.1111/j.1582-4934.2008.00222.x.
  • Begovich AB, Carlton VE, Honigberg LA, et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet, 75, 330–337. doi:10.1086/422827.
  • Bennett ST, Lucassen AM, Gough SC, et al. (1995). Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet, 9, 284–292. doi:10.1038/ng0395-284.
  • Blasetti A, Di Giulio C, Tumini S, et al. (2017). Role of the C1858T polymorphism of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in children and adolescents with type 1 diabetes. Pharmacogenomics J, 17, 186–191. doi:10.1038/tpj.2016.6.
  • Bottini N, Musumeci L, Alonso A, et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet, 36, 337–338. doi:10.1038/ng1323.
  • Bottini N, Peterson EJ. (2014). Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol, 32, 83–119. doi:10.1146/annurev-immunol-032713-120249.
  • Bottini N, Vang T, Cucca F, et al. (2006). Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol, 18, 207–213. doi:10.1016/j.smim.2006.03.008.
  • Burn GL, Svensson L, Sanchez-Blanco C, et al. (2011). Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Letters, 585, 3689–3698. doi:10.1016/j.febslet.2011.04.032.
  • Fedetz M, Matesanz F, Caro-Maldonado A, et al. (2006). The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. T Tissue Antigens, 67, 430–433. doi:10.1111/j.1399-0039.2006.00591.x.
  • Fichna M, Zurawek M, Januszkiewicz-Lewandowska D, et al. (2010). PTPN22, PDCD1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in polish patients. Int J Immunogenet, 37, 367–372. doi:10.1111/j.1744-313X.2010.00935.x.
  • Fousteri G, Liossis SN, Battaglia M. (2013). Roles of the protein tyrosine phosphatase PTPN22 in immunity and autoimmunity. Clin Immunol, 149, 556–565. doi:10.1016/j.clim.2013.10.006.
  • Galvani G, Fousteri G. (2017). PTPN22 and islet-specific autoimmunity: what have the mouse models taught us? World J Diabetes, 8, 330–336. doi:10.4239/wjd.v8.i7.330.
  • Ge Y, Onengut-Gumuscu S, Quinlan AR, et al. (2016). Targeted deep sequencing in multiple-affected sibships of european ancestry identifies rare deleterious variants in PTPN22 that confer risk for type 1 diabetes. Diabetes, 65, 794–802. doi:10.2337/db15-0322.
  • Gianchecchi E, Palombi M, Fierabracci A. (2013). The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev, 12, 717–725. doi:10.1016/j.autrev.2012.12.003.
  • Giza S, Goulas A, Gbandi E, et al. (2013). The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int, 2013, 1–6. doi:10.1155/2013/721604.
  • Gjorloff-Wingren A, Saxena M, Williams S, et al. (1999). Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol, 29, 3845–3854. doi:10.1002/(SICI)1521-4141(199912)29:12<3845::AID-IMMU3845>3.0.CO;2-U.
  • Gloria-Bottini F, Saccucci P, Meloni GF, et al. (2014). Study of factors influencing susceptibility and age at onset of type 1 diabetes: a review of data from Continental Italy and Sardinia. World J Diabetes, 5, 557–561. doi:10.4239/wjd.v5.i4.557.
  • Gomes KF, Santos AS, Semzezem C, et al. (2017). The influence of population stratification on genetic markers associated with type 1 diabetes. Sci Rep, 7, 43513. doi:10.1038/srep43513.
  • Gomez LM, Anaya JM, Gonzalez CI, et al. (2005). PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun, 6, 628–631. doi:10.1038/sj.gene.6364261.
  • Habib T, Funk A, Rieck M, et al. (2012). Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J Immunol, 188, 487–496. doi:10.4049/jimmunol.1102176.
  • Hermann R, Lipponen K, Kiviniemi M, et al. (2006). Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia, 49, 1198–1208. doi:10.1007/s00125-006-0225-4.
  • Hill RJ, Zozulya S, Lu YL, et al. (2002). The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol, 30, 237–244. doi:10.1016/S0301-472X(01)00794-9.
  • Kahles H, Ramos-Lopez E, Lange B, et al. (2005). Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto’s thyroiditis or Addison’s disease in the German population. Eur J Endocrinol, 153, 895–899. doi:10.1530/eje.1.02035.
  • Kavvoura FK, Ioannidis JP. (2005). CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol, 162, 3–16. doi:10.1093/aje/kwi165.
  • Kawasaki E, Awata T, Ikegami H, et al. (2006). Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet A, 140, 586–593. doi:10.1002/ajmg.a.31124.
  • Kordonouri O, Hartmann R, Charpentier N, et al. (2010). Genetic risk markers related to diabetes-associated autoantibodies in young patients with type 1 diabetes in berlin, Germany. Exp Clin Endocrinol Diabetes, 118, 245–249. doi:10.1055/s-0029-1246213.
  • Korolija M, Renar IP, Hadzija M, et al. (2009). Association of PTPN22 C1858T and CTLA-4 A49G polymorphisms with Type 1 diabetes in Croatians. Diabetes Res Clin Pract, 86, e54–57. doi:10.1016/j.diabres.2009.09.012.
  • Kumar N, Kaur G, Kanga U, et al. (2014). Association of PTPN22+1858C/T polymorphism with Type 1 diabetes in the North Indian population. Int J Immunogenet, 41, 318–323. doi:10.1111/iji.12129.
  • Ladner MB, Bottini N, Valdes AM, et al. (2005). Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol, 66, 60–64. doi:10.1016/j.humimm.2004.09.016.
  • Li M, Beauchemin H, Popovic N, et al. (2017). The common, autoimmunity-predisposing 620Arg > Trp variant of PTPN22 modulates macrophage function and morphology. J Autoimmun, 79, 74–83. doi:10.1016/j.jaut.2017.01.009.
  • Liu HW, Xu RY, Sun RP, et al. (2015). Association of PTPN22 gene polymorphism with type 1 diabetes mellitus in Chinese children and adolescents. Genet Mol Res, 14, 63–68. doi:10.4238/2015.January.15.8.
  • Mainardi-Novo DT, Santos AS, Fukui RT, et al. (2013). The PTPN22 1858T allele but not variants in the proximal promoter region of IL-21 gene is associated with the susceptibility to type 1 diabetes and the presence of autoantibodies in a Brazilian cohort. Clin Exp Immunol, 172, 16–22. doi:10.1111/cei.12030.
  • Marrack P, Kappler JW. (2012). Do MHCII-presented neoantigens drive type 1 diabetes and other autoimmune diseases? Cold Spring Harb Perspect Med, 2, a007765. doi:10.1101/cshperspect.a007765.
  • Maziarz M, Janer M, Roach JC, et al. (2010). The association between the PTPN22 1858C>T variant and type 1 diabetes depends on HLA risk and GAD65 autoantibodies. Genes Immun, 11, 406–415. doi:10.1038/gene.2010.12.
  • Menard L, Saadoun D, Isnardi I, et al. (2011). The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest, 121, 3635–3644. doi:10.1172/JCI45790.
  • Metzler G, Dai X, Thouvenel CD. (2017). The autoimmune risk variant PTPN22 C1858T alters B cell tolerance at discrete checkpoints and differentially shapes the naive repertoire. J Immunol, 199, 2249–2260. doi:10.4049/jimmunol.1700601.
  • Nasr A, Abushouk A, Hamza A, et al. (2016). Th-1, Th-2 Cytokines profile among madurella mycetomatis eumycetoma patients. PLoS Negl Trop Dis, 10, e0004862. doi:10.1371/journal.pntd.0004862.
  • Nasr A, Allam G, Al-Zahrani A, et al. (2013). Neonatal infections in Saudi Arabia: association with C-reactive protein, CRP −286 (C>T>A) gene polymorphism and IgG antibodies. BMC Immunol, 14, 38. doi:10.1186/1471-2172-14-38.
  • Nielsen C, Hansen D, Husby S, et al. (2007). Sex-specific association of the human PTPN22 1858T-allele with type 1 diabetes. Int J Immunogenet, 34, 469–473. doi:10.1111/j.1744-313X.2007.00720.x.
  • Nielsen LB, Porksen S, Andersen ML, et al. (2011). The PTPN22 C1858T gene variant is associated with proinsulin in new-onset type 1 diabetes. BMC Med Genet, 12, 41. doi:10.1186/1471-2350-12-41.
  • Noble JA, Valdes AM, Varney MD, et al. (2010). HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium. Diabetes, 59, 2972–2979. doi:10.2337/db10-0699.
  • Petrone A, Spoletini M, Zampetti S, et al. (2008a). The PTPN22 1858T gene variant in type 1 diabetes is associated with reduced residual beta-cell function and worse metabolic control. Diabetes Care, 31, 1214–1218. doi:10.2337/dc07-1158.
  • Petrone A, Suraci C, Capizzi M, et al. (2008b). The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with high GAD antibody titer in latent autoimmune diabetes in adults: non Insulin Requiring Autoimmune Diabetes (NIRAD) Study 3. Diabetes Care, 31, 1214–1218. doi:10.2337/dc07-1158.
  • Prezioso G, Comegna L, Di Giulio C, et al. (2017). C1858T polymorphism of protein tyrosine phosphatase non-receptor type 22 (PTPN22): an eligible target for prevention of type 1 diabetes? Expert Rev Clin Immunol, 13, 189–196. doi:10.1080/1744666X.2017.1266257.
  • Ram R, Morahan G. (2017). Effects of type 1 diabetes risk alleles on immune cell gene expression. Genes, 8, 167. doi:10.3390/genes8060167.
  • Rich SS. (2017). Genetics and its potential to improve type 1 diabetes care. Curr Opin Endocrinol Diabetes Obes, 24, 279–284. doi:10.1097/MED.0000000000000347.
  • Rieck M, Arechiga A, Onengut-Gumuscu S, et al. (2007). Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol, 179, 4704–4710. doi:10.4049/jimmunol.179.7.4704.
  • Saccucci P, Del Duca E, Rapini N, et al. (2008). Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue Antigens, 71, 234–237. doi:10.1111/j.1399-0039.2007.00987.x.
  • Santiago JL, Martinez A, De La Calle H, et al. (2007). Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet, 8, 54. doi:10.1186/1471-2350-8-54.
  • Schickel JN, Kuhny M, Baldo A, et al. (2016). PTPN22 inhibition resets defective human central B cell tolerance. Sci Immunol, 1, aaf7153. doi:10.1126/sciimmunol.aaf7153.
  • Scholin A, Bjorklund L, Borg H, et al. (2004). Islet antibodies and remaining beta-cell function 8 years after diagnosis of diabetes in young adults: a prospective follow-up of the nationwide Diabetes Incidence Study in Sweden. J Intern Med, 255, 384–391. doi:10.1046/j.1365-2796.2003.01273.x.
  • Smyth D, Cooper JD, Collins JE, et al. (2004). Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes, 53, 3020–3023. doi:10.2337/diabetes.53.11.3020.
  • Stanford SM, Bottini N. (2014). PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol, 10, 602–611. doi:10.1038/nrrheum.2014.109.
  • Steck AK, Dong F, Waugh K, et al. (2016). Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun, 72, 113–117. doi:10.1016/j.jaut.2016.05.010.
  • Steck AK, Liu SY, McFann K, et al. (2006). Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes, 7, 274–278. doi:10.1111/j.1399-5448.2006.00202.x.
  • Tang W, Cui D, Jiang L, et al. (2015). Association of common polymorphisms in the IL2RA gene with type 1 diabetes: evidence of 32,646 individuals from 10 independent studies. J Cell Mol Med, 19, 2481–2488. doi:10.1111/jcmm.12642.
  • Zheng W, She J-X. (2005). Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes, 54, 906–908. doi:10.2337/diabetes.54.3.906.
  • Zhernakova A, Eerligh P, Wijmenga C, et al. (2005). Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun, 6, 6. doi:10.1038/sj.gene.6364220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.