Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 47, 2018 - Issue 6
583
Views
26
CrossRef citations to date
0
Altmetric
Article

Altered Immunity in Endometriosis: What Came First?

, , , &

References

  • Ahn SH, Khalaj K, Young SL, et al. (2016). Immune-inflammation gene signatures in endometriosis patients. Fertil Steril, 106, 1420–31 e7.
  • Ali AFM, Fateena B, Ezzeta A, et al. (2000). Laparoscopic intraperitoneal injection of human interferon-α2b in the treatment of pelvic endometriosis: a new modality. Obstet Gynecol, 95, S47–S8.
  • Andreoli CG, Genro VK, Souza CA, et al. (2011). T helper (Th)1, Th2, and Th17 interleukin pathways in infertile patients with minimal/mild endometriosis. Fertil Steril, 95, 2477–2480.
  • Antsiferova YS, Sotnikova NY, Posiseeva LV, Shor AL. (2005). Changes in the T-helper cytokine profile and in lymphocyte activation at the systemic and local levels in women with endometriosis. Fertil Steril, 84, 1705–1711.
  • Baldi A, Campioni M, Signorile PG. (2008). Endometriosis: pathogenesis, diagnosis, therapy and association with cancer (review). Oncol Rep, 19, 843–846.
  • Basta P, Majka M, Jozwicki W, et al. (2010). The frequency of CD25+CD4+ and FOXP3+ regulatory T cells in ectopic endometrium and ectopic decidua. Reprod Biol Endocrinol, 8, 116.
  • Berbic M, Fraser IS. (2011). Regulatory T cells and other leukocytes in the pathogenesis of endometriosis. J Reprod Immunol, 88, 149–155.
  • Binda MM, Donnez J, Dolmans MM. (2017). Targeting mast cells: a new way to treat endometriosis. Expert Opin Ther Targets, 21, 67–75.
  • Bohler HC, Gercel-Taylor C, Lessey BA, Taylor DD. (2007). Endometriosis markers: immunologic alterations as diagnostic indicators for endometriosis. Reprod Sci, 14, 595–604.
  • Budiu RA, Diaconu I, Chrissluis R, et al. (2009). A conditional mouse model for human MUC1-positive endometriosis shows the presence of anti-MUC1 antibodies and Foxp3+ regulatory T cells. Dis Model Mech, 2, 593–603.
  • Bullon P, Navarro JM. (2017). Inflammasome as a key pathogenic mechanism in endometriosis. Curr Drug Targets, 18, 997–1002.
  • Cakmak H, Guzeloglu-Kayisli O, Kayisli UA, Arici A. (2009). Immune-endocrine interactions in endometriosis. Front Biosci (Elite Ed), 1, 429–443.
  • Capobianco A, Monno A, Cottone L, et al. (2011). Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. Am J Pathol, 179, 2651–2659.
  • Chang KK, Liu LB, Jin LP, et al. (2017). IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORgammat/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis, 8, e2666.
  • Chen P, Zhang Z, Chen Q, et al. (2012). Expression of Th1 and Th2 cytokine-associated transcription factors, T-bet and GATA-3, in the eutopic endometrium of women with endometriosis. Acta Histochem, 114, 779–784.
  • Christodoulakos G, Augoulea A, Lambrinoudaki I, et al. (2007). Pathogenesis of endometriosis: the role of defective ‘immunosurveillance’. Eur J Contracept Reprod Health Care, 12, 194–202.
  • D’Antonio M, Martelli F, Peano S, et al. (2000). Ability of recombinant human TNF binding protein-1 (r-hTBP-1) to inhibit the development of experimentally-induced endometriosis in rats. J Reprod Immunol, 48, 81–98.
  • De Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, et al. (2017). What do we know about regulatory T cells and endometriosis? A systematic review. J Reprod Immunol, 120, 48–55.
  • De Palma M, Naldini L. (2011). Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin Cancer Res, 17, 5226–5232.
  • De Villiers WJ, Fraser IP, Gordon S. (1994). Cytokine and growth factor regulation of macrophage scavenger receptor expression and function. Immunol Lett, 43, 73–79.
  • Dmowski WP, Steele RW, Baker GF. (1981). Deficient cellular immunity in endometriosis. Am J Obstet Gynecol, 141, 377–383.
  • Edwards RP, Huang X, Vlad AM. (2015). Chronic inflammation in endometriosis and endometriosis-associated ovarian cancer: new roles for the “old” complement pathway. Oncoimmunology, 4, e1002732.
  • Eisenberg VH, Zolti M, Soriano D. (2012). Is there an association between autoimmunity and endometriosis? Autoimmun Rev, 11, 806–814.
  • Fassbender A, Burney RO, O Dorien F, et al. (2015). Update on biomarkers for the detection of endometriosis. Biomed Res Int, 2015, 130854.
  • Fassbender A, Overbergh L, Verdrengh E, et al. (2011). How can macroscopically normal peritoneum contribute to the pathogenesis of endometriosis? Fertil Steril, 96, 697–699.
  • Fong S, Debs RJ, Desprez PY. (2004). Id genes and proteins as promising targets in cancer therapy. Trends Mol Med, 10, 387–392.
  • Gmyrek GB, Sieradzka U, Goluda M, et al. (2008). Flow cytometric evaluation of intracellular cytokine synthesis in peripheral mononuclear cells of women with endometriosis. Immunol Invest, 37, 43–61.
  • Gogacz M, Winkler I, Bojarska-Junak A, et al. (2016). Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J Reprod Immunol, 117, 39–44.
  • Guo Y, Chen Y, Liu LB, et al. (2013). IL-22 in the endometriotic milieu promotes the proliferation of endometrial stromal cells via stimulating the secretion of CCL2 and IL-8. Int J Clin Exp Pathol, 6, 2011–2020.
  • Hassa H, Tanir HM, Tekin B, et al. (2009). Cytokine and immune cell levels in peritoneal fluid and peripheral blood of women with early- and late-staged endometriosis. Arch Gynecol Obstet, 279, 891–895.
  • Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG. (2011). Immune interactions in endometriosis. Expert Rev Clin Immunol, 7, 611–626.
  • Hirata T, Osuga Y, Hamasaki K, et al. (2008). Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. Endocrinology, 149, 1260–1267.
  • Hirata T, Osuga Y, Takamura M, et al. (2010). Recruitment of CCR6-expressing Th17 cells by CCL 20 secreted from IL-1 beta-, TNF-alpha-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology, 151, 5468–5476.
  • Hornung D, Fujii E, Lim KH, et al. (2001). Histocompatibility leukocyte antigen-G is not expressed by endometriosis or endometrial tissue. Fertil Steril, 75, 814–817.
  • Hull ML, Johan MZ, Hodge WL, et al. (2012). Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol, 180, 880–887.
  • Jerman LF, Hey-Cunningham AJ. (2015). The role of the lymphatic system in endometriosis: a comprehensive review of the literature. Biol Reprod, 92, 64.
  • Jeung I, Cheon K, Kim MR. (2016). Decreased cytotoxicity of peripheral and peritoneal natural killer cell in endometriosis. Biomed Res Int, 2016, 2916070.
  • Jones RK, Bulmer JN, Searle RF. (1998). Phenotypic and functional studies of leukocytes in human endometrium and endometriosis. Hum Reprod Update, 4, 702–709.
  • Jones RL, Hannan NJ, Kaitu’u TJ, et al. (2004). Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab, 89, 6155–6167.
  • Kao AP, Wang KH, Long CY, et al. (2011). Interleukin-1beta induces cyclooxygenase-2 expression and promotes the invasive ability of human mesenchymal stem cells derived from ovarian endometrioma. Fertil Steril, 96, 678–84 e1.
  • Kralickova M, Losan P, Vetvicka V. (2014). Endometriosis and cancer. Womens Health (Lond), 10, 591–597.
  • Kralickova M, Vetvicka V. (2015). Immunological aspects of endometriosis: a review. Ann Transl Med, 3, 153.
  • Lebovic DI, Bentzien F, Chao VA, et al. (2000). Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1beta. Mol Hum Reprod, 6, 269–275.
  • Lin KQ, Zhu LB, Zhang XM, Lin J. (2015). [Role of mast cells in estrogen-mediated experimental endometriosis in rats]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 44, 269–277.
  • Maeda N, Izumiya C, Oguri H, et al. (2002). Aberrant expression of intercellular adhesion molecule-1 and killer inhibitory receptors induces immune tolerance in women with pelvic endometriosis. Fertil Steril, 77, 679–683.
  • Malutan AM, Drugan T, Ciortea R, et al. (2017). Endometriosis-associated changes in serum levels of interferons and chemokines. Turk J Med Sci, 47, 115–122.
  • Matorras R, Ocerin I, Unamuno M, et al. (2007). Prevalence of endometriosis in women with systemic lupus erythematosus and Sjogren’s syndrome. Lupus, 16, 736–740.
  • Maybin JA, Critchley HO, Jabbour HN. (2011). Inflammatory pathways in endometrial disorders. Mol Cell Endocrinol, 335, 42–51.
  • Montenegro ML, Ferriani RA, Basse PH. (2015). Exogenous activated NK cells enhance trafficking of endogenous NK cells to endometriotic lesions. BMC Immunol, 16, 51.
  • Nielsen NM, Jorgensen KT, Pedersen BV, et al. (2011). The co-occurrence of endometriosis with multiple sclerosis, systemic lupus erythematosus and Sjogren syndrome. Hum Reprod, 26, 1555–1559.
  • Nowak NM, Fischer OM, Gust TC, et al. (2008). Intraperitoneal inflammation decreases endometriosis in a mouse model. Hum Reprod, 23, 2466–2474.
  • Olovsson M. (2011). Immunological aspects of endometriosis: an update. Am J Reprod Immunol, 66, 101–104.
  • Omwandho CO, Konrad L, Halis G, et al. (2010). Role of TGF-betas in normal human endometrium and endometriosis. Hum Reprod, 25, 101–109.
  • Osuga Y, Koga K, Hirota Y, et al. (2011). Lymphocytes in endometriosis. Am J Reprod Immunol, 65, 1–10.
  • Osuga Y, Koga K, Tsutsumi O, et al. (2000). Stem cell factor (SCF) concentrations in peritoneal fluid of women with or without endometriosis. Am J Reprod Immunol, 44, 231–235.
  • Pascual-Garcia M, Bertolo C, Nieto JC, et al. (2016). CD8 down-regulation on cytotoxic T lymphocytes of patients with endometrioid endometrial carcinomas. Hum Pathol, 56, 180–188.
  • Pasoto SG, Abrao MS, Viana VS, et al. (2005). Endometriosis and systemic lupus erythematosus: a comparative evaluation of clinical manifestations and serological autoimmune phenomena. Am J Reprod Immunol, 53, 85–93.
  • Pizzo A, Salmeri FM, Ardita FV, et al. (2002). Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol Obstet Invest, 54, 82–87.
  • Podgaec S, Dias Junior JA, Chapron C, et al. (2010). Th1 and Th2 immune responses related to pelvic endometriosis. Rev Assoc Med Bras, 1992, 92–98.
  • Polanczyk MJ, Hopke C, Huan J, et al. (2005). Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol, 170, 85–92.
  • Polanczyk MJ, Hopke C, Vandenbark AA, Offner H. (2007). Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol, 19, 337–343.
  • Riccio LGC, Baracat EC, Chapron C, et al. (2017). The role of the B lymphocytes in endometriosis: a systematic review. J Reprod Immunol, 123, 29–34.
  • Sabbaghi M, Aram R, Roustaei H, et al. (2014). IL-17A concentration of seminal plasma and follicular fluid in infertile men and women with various clinical diagnoses. Immunol Invest, 43, 617–626.
  • Salmeri FM, Lagana AS, Sofo V, et al. (2015). Behavior of tumor necrosis factor-alpha and tumor necrosis factor receptor 1/tumor necrosis factor receptor 2 system in mononuclear cells recovered from peritoneal fluid of women with endometriosis at different stages. Reprod Sci, 22, 165–172.
  • Shifren JL, Tseng JF, Zaloudek CJ, et al. (1996). Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab, 81, 3112–3118.
  • Sinaii N, Cleary SD, Ballweg ML, et al. (2002). High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: a survey analysis. Hum Reprod, 17, 2715–2724.
  • Slabe N, Meden-Vrtovec H, Verdenik I, et al. (2013). Cytotoxic T-Cells in peripheral blood in women with endometriosis. Geburtshilfe Frauenheilkd, 73, 1042–1048.
  • Song GG, Lee YH. (2014). A meta-analysis of the association between p53 codon 72 polymorphism and susceptibility to endometriosis. Immunol Invest, 43, 595–605.
  • Steele RW, Dmowski WP, Marmer DJ. (1984). Immunologic aspects of human endometriosis. Am J Reprod Immunol, 6, 33–36.
  • Sturlese E, Salmeri FM, Retto G, et al. (2011). Dysregulation of the Fas/FasL system in mononuclear cells recovered from peritoneal fluid of women with endometriosis. J Reprod Immunol, 92, 74–81.
  • Szymanowski K, Niepsuj-Binias J, Dera-Szymanowska A, et al. (2013). An influence of immunomodulation on Th1 and Th2 immune response in endometriosis in an animal model. Biomed Res Int, 2013, 849492.
  • Takamura M, Koga K, Izumi G, et al. (2015). Simultaneous detection and evaluation of four subsets of CD4+ T lymphocyte in lesions and peripheral blood in endometriosis. Am J Reprod Immunol, 74, 480–486.
  • Takehara M, Ueda M, Yamashita Y, et al. (2004). Vascular endothelial growth factor A and C gene expression in endometriosis. Hum Pathol, 35, 1369–1375.
  • Taylor PV, Maloney MD, Campbell JM, et al. (1991). Autoreactivity in women with endometriosis. Br J Obstet Gynaecol, 98, 680–684.
  • Thiruchelvam U, Wingfield M, O’Farrelly C. (2015). Natural killer cells: key players in endometriosis. Am J Reprod Immunol, 74, 291–301.
  • Uchiide I, Ihara T, Sugamata M. (2002). Pathological evaluation of the rat endometriosis model. Fertil Steril, 78, 782–786.
  • Ulukus M, Cakmak H, Arici A. (2006). The role of endometrium in endometriosis. J Soc Gynecol Investig, 13, 467–476.
  • Vetvicka V, Lagana AS, Salmeri FM, et al. (2016). Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet, 294, 897–904.
  • Vigano P, Gaffuri B, Somigliana E, et al. (1998). Expression of intercellular adhesion molecule (ICAM)-1 mRNA and protein is enhanced in endometriosis versus endometrial stromal cells in culture. Mol Hum Reprod, 4, 1150–1156.
  • Vignali M, Infantino M, Matrone R, et al. (2002). Endometriosis: novel etiopathogenetic concepts and clinical perspectives. Fertil Steril, 78, 665–678.
  • Von Rokytansky C. (1860). Uber uterusdrusen-neubildung in uterus inder ovarilsarcomen. Z Ges Artze Wein, 37, 577–593.
  • Wei C, Mei J, Tang L, et al. (2016). 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis, 7, e2489.
  • Wieser F, Dogan S, Klingel K, et al. (2005). Expression and regulation of CCR1 in peritoneal macrophages from women with and without endometriosis. Fertil Steril, 83, 1878–1881.
  • Wood DH, Yochmowitz MG, Salmon YL, et al. (1983). Proton irradiation and endometriosis. Aviat Space Environ Med, 54, 718–724.
  • Wu J, Xie H, Yao S, Liang Y. (2017a). Macrophage and nerve interaction in endometriosis. J Neuroinflammation, 14, 53.
  • Wu MH, Shoji Y, Wu MC, et al. (2005). Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am J Pathol, 167, 1061–1069.
  • Wu MY, Ho HN. (2003). The role of cytokines in endometriosis. Am J Reprod Immunol, 49, 285–296.
  • Wu MY, Yang JH, Chao KH, et al. (2000). Increase in the expression of killer cell inhibitory receptors on peritoneal natural killer cells in women with endometriosis. Fertil Steril, 74, 1187–1191.
  • Wu RF, Yang HM, Zhou WD, et al. (2017b). Effect of interleukin-1beta and lipoxin A4 in human endometriotic stromal cells: proteomic analysis. J Obstet Gynaecol Res, 43, 308–319.
  • Young VJ, Ahmad SF, Brown JK, et al. (2015). Peritoneal VEGF-A expression is regulated by TGF-beta1 through an ID1 pathway in women with endometriosis. Sci Rep, 5, 16859.
  • Yu JJ, Sun HT, Zhang ZF, et al. (2016). IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction, 152, 151–160.
  • Yu YX, Xiu YL, Chen X, Li YL. (2017). Transforming growth factor-beta 1 involved in the pathogenesis of endometriosis through regulating expression of vascular endothelial growth factor under hypoxia. Chin Med J (Engl), 130, 950–956.
  • Yutaka O, Yasushi H, Tetsuya H, et al. (2016). Th2 cells and Th17 cells in the development of endometriosis – possible roles of interleukin-4 and interleukin-17A. Journal of Endometriosis and Pelvic Pain Disorders, 8, 136–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.