Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 48, 2019 - Issue 8
191
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Changing microRNA Expression during Three-Month Wasp Venom Immunotherapy

ORCID Icon, , , , , & show all

References

  • Akdis M, Akdis C. (2007). Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol, 119, 780–789. doi:10.1016/j.jaci.2007.01.022
  • Bao L, Chau C, Bao J, et al. (2018). IL-4 dysregulates microRNAs involved in inflammation, angiogenesis and apoptosis in epidermal keratinocytes. Microbiol Immunol, 62(11), 732–736. doi:10.1111/1348-0421.12650
  • Bartel D. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233. doi:10.1016/j.cell.2009.01.002
  • Bleck B, Grunig G, Chiu A, et al. (2013). MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol, 190(7), 3757–3763. doi:10.4049/jimmunol.1201165
  • Bonifazi F, Jutel M, Bilo M, et al. 2005. EAACI position paper. Prevention and treatment of Hymenoptera venom allergy. www.eaaci.org
  • Bothur E, Raifer H, Haftmann C, et al. (2015). Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nat Commun, 6(1). doi:10.1038/ncomms9576
  • Bussmann C, Xia J, Allam J, et al. (2010). Early markers for protective machanisms during rush venom immunotherapy. Allergy, 65, 1558–1565. doi:10.1111/j.1398-9995.2010.02430.x
  • Courboulin A, Paulin R, Giguere N, et al. (2011). Role for miR-204 in pulmonary arterial hypertension. J Exp Med, 208, 535–548. doi:10.1084/jem.20101812
  • Dhami S, Zaman H, Varga E, et al. (2017). Allergen immunotherapy for insect venom allergy: a systematic review and meta-analysis. Allergy, 72, 342–365. doi:10.1111/all.13077
  • Dong X, Xu M, Ren Z, et al. (2016). Regulation of CBL and ESR1 expression by microRNA-22-3p, 513a-5p and 625-5p may impact the pathogenesis of dust mite-induced pediatric asthma. Int J Mol Med, 38, 446–456. doi:10.3892/ijmm.2016.2634
  • Garbacki N, Di Valentin E, Huynh-Thu VA, et al.(2011). MicroRNAs profiling in murine models of acute and chronic asthma: A relationship with mRNAs targets. PLoS One, 6, e16509. doi:10.1371/journal.pone.0016509
  • Global Initiative for Asthma. (2018). Global strategy for asthma management and prevention. www.ginasthma.org
  • He P, Ni J, Zhao H, Jin X. (2017). Diagnostic value of miR-221 and miR-142-3p expressions of allergic rhinitis and miR-221 level is positively correlated with disease severity. Int J Clin Exp Med, 10, 7834–7842.
  • Hezova R, Slaby O, Faltejskova P, et al. (2010). MicroRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol, 260, 70–74. doi:10.1016/j.cellimm.2009.10.012
  • Hou B, Murata M, Said A, et al. (2015). Changes in micro-RNAs in asymptomatic subjects sensitized to Japanese cedar pollen after prophylactic sublingual immunotherapy. Allergy Rhinol, 6(1), e33–38. doi:10.2500/ar.2015.6.0107
  • Jia M, Chu C, Wang M. (2018). Correlation of microRNA profiles with disease risk and severity of allergic rhinitis. Int J Clin Exp Pathol, 11, 1791–1802.
  • Jun H, Ying H, Daiwen C, et al. (2015). MiR-628, a microRNA that is induced by toll-like receptor stimulation, regulates porcine innate immune responses. Sci Rep, 5(1), 12226. doi:10.1038/srep12226
  • Jutel M, Akdis C. (2011). Immunological mechanisms of allergen-specific immunotherapy. Allergy, 66(6), 725–732. doi:10.1111/j.1398-9995.2011.02589.x
  • Kastle M, Bartel S, Geillinger-Kastle K, et al. (2017). MicroRNA cluster 106a-363 is involved in T helper 17 cell differentiation. Immunol, 152, 402–413. doi:10.1111/imm.12775
  • Kumar M, Ahmad T, Sharma A, et al. (2011). Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol, 128, 1077–1085. doi:10.1016/j.jaci.2011.04.034
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858. doi:10.1126/science.1064921
  • Levanen B, Bhakta N, Paredes P, et al. (2013). Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol, 131, 894–903. doi:10.1016/j.jaci.2012.11.039
  • Li Q, Chau J, Ebert P, et al. (2007). miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 129, 147–161. doi:10.1016/j.cell.2007.03.008
  • Liu F, Qin H, Xu B, et al. (2012). Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p. Mol Med Rep, 6, 1178–1182. doi:10.3892/mmr.2012.1030
  • Long C, Lukomska E, Marshall N, et al. (2017). Potential inhibitory influence of miRNA-210 on regulatory T cells during epicutaneous chemical sensitization. Genes, 8. doi:10.3390/genes80100009
  • Lu T, Hartner J, Lim E, et al. (2011). MicroRNA-21 limits in vivo immunoe response -mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization and the severity of delayed-type hypersensitivity. J Immunol, 187, 3362–3373. doi:10.4049/jimmunol.1101235
  • Lu T, Rothenberg M. (2013). Diagnostic, functional and therapeutic roles of microRNa in allergic diseases. J Allergy Clin Immunol, 132, 3–13. doi:10.1016/j.jaci.2013.04.039
  • Lu T, Sherrill J, Wen T, et al. (2012). MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol, 129, 1064–1093. doi:10.1016/j.jaci.2012.01.060
  • Luo X, Hong H, Tang J, et al. (2016). Increased expression of miR-146a in children with allergic rhinitis after allergen-specific immunotherapy. Allergy Asthma Immunol Res, 8, 132–140. doi:10.4168/aair.2016.8.2.132
  • Ma Z, Tan X, Shen Y, et al. (2015). MicroRNA expression profile of mature dendritic cell in chronic rhinosinusitis. Inflamm Res, 64, 885–893. doi:10.1007/s00011-015-0870-5
  • Mai J, Virtue A, Maley E, et al. (2012). MicroRNAs and other mechanisms regulate interleukin-17 cytokines and receptors. Front Biosci, 4, 1478–1495. doi:10.2741/e474
  • Mamessier E, Birnbaum J, Dupuy P, et al. (2006). Ultra-rush venom immunotherapy induces differential T cell activation and regulatory patterns sccording to the severity of allergy. Clin Exp Allergy, 36, 704–713. doi:10.1111/j.1365-2222.2006.02487.x
  • Mueller H. (1966). Diagnosis and treatment of insect sensitivity. J Asthma Res, 3, 331–333.
  • Niedoszytko M, Bruinenberg M, de Monchy J, et al. (2010). Gene expression analysis in predicting the effectiveness of insect venom immunotherapy. J Allergy Clin Immunol, 125, 1092–1097. doi:10.1016/j.jaci.2010.01.021
  • Ooi A, Ram S, Kuo A, et al. (2012). Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation. Am J Transl Res, 4, 219–228.
  • Panganiban R, Pinkerton M, Maru S, et al. (2012). Differential microRNA expression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol, 1, 154–165.
  • Panganiban R, Wang Y, Howrylak J, et al. (2016). Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol, 137, 1423–1432. doi:10.1016/j.jaci.2016.01.029
  • Polikepahad S, Knight M, Naghavi A, et al. (2010). Proinflammatory role for let-7 microRNAs in experimental asthma. J Biol Chem, 285, 30139–30149. doi:10.1074/jbc.M110.145698
  • Rupani H, Martinez-Nunez R, Dennison P, et al. (2016). Toll-like receptor 7 is reduced in severe asthma and linked to an altered microRNA profile. Am J Respir Crit Care Med, 194, 26–37. doi:10.1164/rccm.201502-0280OC
  • Rutledge H, Baran-Gale J, de Villena FP-M, et al. (2015). Identification of microRNAs associated with allergic airway disease using a genetically diverse mouse population. Genomics, 16, 633.
  • Sawant D, Wu H, Kaplan M, Dent A. (2013). The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol Immunol, 54, 435–442. doi:10.1016/j.molimm.2013.01.006
  • Shaoqing Y, Ruxin Z, Guojun L, et al. (2011). Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol, 25, 242–246. doi:10.2500/ajra.2011.25.3682
  • Solberg O, Ostrin E, Love M, et al. (2012). Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med, 186, 965–974. doi:10.1164/rccm.201201-0027OC
  • Specjalski K, Maciejewska A, Pawłowski R, et al. (2016). Changes in the expression of microRNA in the buildup phase of wasp venom immunotherapy: a pilot study. Int Arch Allergy Immunol, 170, 97–100. doi:10.1159/000447637
  • Stittrich A, Haftmann C, Sgouroudis E, et al. (2010). The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol, 11, 1057–1063. doi:10.1038/ni.1945
  • Suojalehto H 2014. Airway inflammatory markers in asthma and rhinitis – microRNA, nasal nitric oxide and proteome analysis. People and Work Research Reports. Helsinki. 2014.
  • Suojalehto H, Lindström I, Majuri M, et al. (2014). Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int Arch Allergy Immunol, 163, 168–178. doi:10.1159/000358486
  • Vishweswaraiah S, Veerappa A, Mahesh P, et al. (2014). Molecular interaction network and pathway studies of ADAM33 potentially relevant to asthma. Ann Allergy Asthma Immunol, 113, 418–424. doi:10.1016/j.anai.2014.07.009
  • Yang Y, Yin X, Yi J, Peng X. (2017). MiR-146a overexpression effectively improves experimental allergic conjunctivitis through regulating CD4+CD25-T cells. Biomed Pharmacother, 94, 937–943. doi:10.1016/j.biopha.2017.07.157
  • Yu S, Zhang R, Zhu C, et al. (2013). MicroRNA-143 downregulates interleukin-13 receptor alpha 1 in human mast cells. Int J Mol Sci, 14, 16958–16969. doi:10.3390/ijms140816958
  • Zhang Y, Sun E, Li X, et al. (2017). miR-155 contributes to Df1-induced asthma by increasing the proliferative response of Th cells via CTLA-4 downregulation. Cell Immunol, 314, 1–9. doi:10.1016/j.cellimm.2017.01.005
  • Zhou H, Li J, Gao P, et al. (2016). miR-155: a novel target in allergic asthma. Int J Mol Sci, 17(10), 1773. doi:10.3390/ijms17101773
  • Zhu D, Gao W, Zhang Z. (2018). MicroRNA-1180 is associated with growth and apoptosis in prostate cancer via TNF receptor associated factor 1 expression regulation and nuclear factor-κβ signalling pathway activation. Oncol Lett, 15, 4775–4780. doi:10.3892/ol.2018.7914

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.