Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 51, 2022 - Issue 7
206
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Altered Levels of Negative Costimulatory Molecule V-Set Domain-Containing T-Cell Activation Inhibitor-1 (VTCN1) and Metalloprotease Nardilysin (NRD1) are Associated with Generalized Active Vitiligo

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akay B, Bozkir M, Anadolu Y, Gullu S. 2010. Epidemiology of vitiligo, associated autoimmune diseases and audiological abnormalities: Ankara study of 80 patients in Turkey. J Eur Acad Dermatology Venereol. 24(10):1144–50.
  • Alberdi-Saugstrup M, Enevold C, Zak M, Nielsen S, Nordal E, Berntson L, Fasth K, Rygg M, Müller K. 2017. Non-HLA gene polymorphisms in Juvenile idiopathic arthritis: associations with disease outcome. Scand J Rheumatol. 46(5):369–76.
  • Albers HM, Reinards THCM, Brinkman DMC, Kamphuis SSM, van Rossum MAJ, Hoppenreijs EPH, Girschick HJ, Wouters C, Saurenmann RK, Bakker E, et al. 2014. Genetic variation in VTCN1 (B7-H4) is associated with course of disease in juvenile idiopathic arthritis. Ann Rheum Dis. 73(6):1198–201.
  • Azuma T, Zhu G, Xu H, Rietz AC, Drake CG, Matteson EL, and Chen L. 2009. Potential role of decoy B7-H4 in the pathogenesis of rheumatoid arthritis: a mouse model informed by clinical data. Liu Y-J, ed. PLoS Med. 6(10):e1000166.
  • Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, et al. 2012. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22(9):1790–97.
  • Chen Y, Guo G, Guo S, Shimoda S, Shroyer KR, Tang Y, and Wu Y. 2011. Intracellular B7-H4 suppresses bile duct epithelial cell apoptosis in human primary biliary cirrhosis. Inflammation. 34(6):688–97.
  • Choi I, Zhu G, Sica GL, Strome SE, Cheville JC, Lau JS, Zhu Y, Flies DB, Tamada K, Chen L, et al. 2003. Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J Immunol. 171(9):4650–54.
  • Daha NA, Lie BA, and Trouw LA, et al. 1987. Novel genetic association of the VTCN1 region with rheumatoid arthritis. p. 567–72.
  • Dwivedi M, Laddha NC, Imran M, Shah BJ, Begum R. 2011. Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) in isolated vitiligo: a genotype-phenotype correlation. Pigment Cell Melanoma Res. 24(4):737–40.
  • Dwivedi M, Laddha NC, Arora P, Marfatia YS, Begum R. 2013. Decreased regulatory T-cells and CD4 +/CD8 + ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell Melanoma Res. 26(4):586–91.
  • Dwivedi M, Helen Kemp E, Laddha NC, Mansuri MS, Weetman AP, Begum R. 2015. Regulatory T cells in vitiligo: implications for pathogenesis and therapeutics. Autoimmun Rev. 14(1):49–56.
  • Ezzedine, K, Lim, HW, Suzuki, T, Katayama, I, Hamzavi, I, Lan, CC, Goh, BK, Anbar, T, Silva de Castro, C, and Lee, AY Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference Pigment Cell Melanoma Res. 2012. 25(3):E1–13.
  • Falabella R, Arrunategui A, Barona MI, Alzate A. 1995. The minigrafting test for vitiligo: detection of stable lesions for melanocyte transplantation. J Am Acad Dermatol. 32(2):228–32.
  • Frisoli ML, Essien K, Harris JE. 2020. Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol. 38(1):621–48.
  • Giri PS, Dwivedi M, Begum R. 2020. Decreased suppression of CD8 + and CD4 + T cells by peripheral regulatory T cells in generalized vitiligo due to reduced NFATC1 and FOXP3 proteins. Exp Dermatol. 29(8):759–75.
  • Harris JE. 2016. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev. 269(1):11–25.
  • Hinks A, Barton A, Shephard N, Eyre S, Bowes J, Cargill M, Wang E, Ke X, Kennedy GC, John S, et al. 2009. Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis. Arthritis Rheum. 60(1):258–63.
  • Hofmeyer KA, Scandiuzzi L, Ghosh K, Pirofski L-A, Zang X. 2012. Tissue-expressed B7x affects the immune response to and outcome of lethal pulmonary infection. J Immunol. 189(6):3054–63.
  • Hospital V, Chesneau V, Balogh A, Joulie C, Seidah NG, Cohen P, Prat A. 2000. N-arginine dibasic convertase (nardilysin) isoforms are soluble dibasic-specific metalloendopeptidases that localize in the cytoplasm and at the cell surface. Biochem J. 349(2):587.
  • Imran M, Laddha NC, Dwivedi M, Mansuri MS, Singh J, Rani R, Gokhale RS, Sharma VK, Marfatia YS, Begum R, et al. 2012. Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. Br J Dermatol. 167(2):314–23.
  • Jadeja SD, Mansuri MS, Singh M, Dwivedi M, Laddha NC, and Begum R . 2017. A case-control study on association of proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1) polymorphisms and their transcript levels in vitiligo from Gujarat. PLoS One. 12(7):e0180958.
  • Jadeja SD, Mansuri MS, Singh M, Patel H, Marfatia YS, Begum R. 2018. Association of elevated homocysteine levels and methylenetetrahydrofolate reductase (MTHFR) 1298 a > C polymorphism with vitiligo susceptibility in Gujarat. J Dermatol Sci. 90(2):112–22.
  • Jadeja SD, Mayatra JM, Vaishnav J, Shukla N, Begum R. 2021. A concise review on the role of endoplasmic reticulum stress in the development of autoimmunity in vitiligo pathogenesis. Front Immunol. 11(February):1–9.
  • John P, Wei Y, Liu W, Du M, Guan F, Zang X. 2019. The B7x immune checkpoint pathway: from discovery to clinical trial. Trends Pharmacol Sci. 40(11):883–96.
  • Kemp EH, Waterman EA, Weetman AP. 2001. Immunological pathomechanisms in vitiligo. Expert Rev Mol Med. 3(20):1–22.
  • Kessler JH, Khan S, Seifert U, Le Gall S, Chow KM, Paschen A, Bres-Vloemans SA, de Ru A, van Montfoort N, Franken KLMC, et al. 2011. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol. 12(1):45–53.
  • Kobata T, Azuma M, Yagita H, Okumura K. 2000. Role of costimulatory molecules in autoimmunity. Rev Immunogenet. 2(1):74–80.
  • Krüger C, Schallreuter KU. 2012. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 51(10):1206–12.
  • Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, et al. 2006. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med. 203(4):871–81.
  • Laddha NC, Dwivedi M, Mansuri MS, Singh M, Gani AR, Yeola AP, Panchal VN, Khan F, Dave DJ, Patel A, et al. 2014. Role of oxidative stress and autoimmunity in onset and progression of vitiligo. Exp Dermatol. 23(5):352–53.
  • Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. 1996. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol. 148(4):1219–28.
  • Lee JS, Scandiuzzi L, Ray A, Wei J, Hofmeyer KA, Abadi YM, Loke P, Lin J, Yuan J, Serreze DV, et al. 2012. B7x in the periphery abrogates pancreas-specific damage mediated by self-reactive CD8 T cells. J Immunol. 189(8):4165–74.
  • Mohammed GF. 2015. Highlights in pathogenesis of vitiligo. World J Clin Cases. 3(3):221.
  • Prasad DV, Richards S, Mai XM, Dong C. 2003. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity. 18(6):863–73.
  • Radichev IA, Maneva-Radicheva LV, Amatya C, Parker C, Ellefson J, Wasserfall C, Atkinson M, Burn P, Savinov AY. 2014. Nardilysin-dependent proteolysis of cell-associated VTCN1 (B7-H4) marks type 1 diabetes development. Diabetes. 63(10):3470–82.
  • Radichev IA, Maneva-Radicheva LV, Amatya C, Salehi M, Parker C, Ellefson J, Burn P, Savinov AY. 2016. Loss of peripheral protection in pancreatic islets by proteolysis-driven impairment of VTCN1 (B7-H4) presentation is associated with the development of autoimmune diabetes. J Immunol. 196(4):1495–506.
  • Ramos PS, Criswell LA, Moser KL, Comeau ME, Williams AH, Pajewski NM, Chung SA, Graham RR, Zidovetzki R, and Kelly JA, et al. 2011. A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. Dermitzakis ET, ed. PLoS Genet. 7(12):e1002406.
  • Reinards THCM, Albers HM, Brinkman DMC, Kamphuis SSM, van Rossum MAJ, Girschick HJ, … Schilham MW, Hoppenreijs EPAH, Saurenmann RK, Hinks A. 2015. CD226 (DNAM-1) is associated with susceptibility to Juvenile Idiopathic Arthritis. Ann Rheum Dis. 74(12):2193–98.
  • Shah F, Patel S, Begum R, Dwivedi M. 2021. Emerging role of tissue resident memory T cells in vitiligo: from pathogenesis to therapeutics. Autoimmun Rev. 20(8):102868.
  • Sica GL, Choi I, Zhu G, Tamada K, Wang S-D, Tamura H, Chapoval AI, Flies DB, Bajorath J, Chen L, et al. 2003. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 18(6):849–61.
  • Singh M, Kotnis A, Jadeja SD, Mondal A, Mansuri MS, Begum R. 2019. Cytokines: the yin and yang of vitiligo pathogenesis. Expert Rev Clin Immunol. 15(2):177–88.
  • Singh M, Jadeja SD, and Vaishnav J, et al. 2020. Investigation of the role of interleukin 6 in vitiligo pathogenesis. Immunol Invest. 00(00):1–18.
  • Smith JB, Lanitis E, Dangaj D, Buza E, Poussin M, Stashwick C, Scholler N, Powell DJ. 2016. Tumor regression and delayed onset toxicity following B7-H4 CAR T cell therapy. Mol Ther. 24(11):1987–99.
  • Teixeira VH, Olaso R, Martin-Magniette M-L, Lasbleiz S, Jacq L, Oliveira CR, Hilliquin P, Gut I, Cornelis F, and Petit-Teixeira E, et al. 2009. Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. Rich B, ed. PLoS One. 4(8):e6803.
  • van den Boorn JG, Konijnenberg D, Dellemijn TAM, Wietze van der Veen JP, Bos JD, Melief CJM, Vyth-Dreese FA, Luiten RM. 2009. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 129(9):2220–32.
  • Wang S, Chen L. 2004. Co-Signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes Infect. 6(8):759–66.
  • Wang X, Hao J, Metzger DL, Mui A, Ao Z, Akhoundsadegh N, Langermann S, Liu L, Chen L, Ou D, et al. 2011. Early treatment of NOD mice with B7-H4 reduces the incidence of autoimmune diabetes. Diabetes. 60(12):3246–55.
  • Xiao ZX, Zheng X, Hu L, Wang J, Olsen N, Zheng SG. 2017. Immunosuppressive effect of B7-H4 pathway in a murine systemic lupus erythematosus model. Front Immunol. 8(December):1–12.
  • Xiao J, Wang X-R, Zhang S, Wang J, Zhang C, Wang D-G. 2019. Increased serum levels of soluble B7-H4 in patients with systemic lupus erythematosus. Iran J Immunol. 16(1):43–52.
  • Yu D, Li X, Wang X, Wang X, Li X. 2012. B7-H4 expression of salivary gland and sera in patients with primary Sjogren’s syndrome. Zhonghua Yi Xue Za Zhi. 92(39):2775–77.
  • Zang X, Loke P, Kim J, Murphy K, Waitz R, Allison JP. 2003. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci. 100(18):10388–92.
  • Zhang Y, Cai Y, and Shi M, et al. 2016. The prevalence of vitiligo: a meta-analysis. PLoS One. 11(9):1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.