23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of siRNA-Mediated Cofilin-1 Knockdown and Obesity Associated Microenvironment on the Motility of Natural Killer Cells

, , , , , , , , , & show all

References

  • Andrianantoandro, E., & Pollard, T. D. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Molecular Cell, 24(1), 13–23. https://doi.org/10.1016/j.molcel.2006.08.006
  • Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J.-I., Hotta, K., Shimomura, I., Nakamura, T., Miyaoka, K., Kuriyama, H., Nishida, M., Yamashita, S., Okubo, K., Matsubara, K., Muraguchi, M., Ohmoto, Y., Funahashi, T., & Matsuzawa, Y. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications, 257(1), 79–83. https://doi.org/10.1006/bbrc.1999.0255
  • Bahr, I., Goritz, V., Doberstein, H., Hiller, G. G. R., Rosenstock, P., Jahn, J., Pörtner, O., Berreis, T., Mueller, T., Spielmann, J., & Kielstein, H. (2017). Diet-induced obesity is associated with an impaired NK cell function and an increased colon cancer incidence. Journal of Nutrition and Metabolism, 2017, 1–14. https://doi.org/10.1155/2017/4297025
  • Bamburg, J. R. (1999). Proteins of the ADF/cofilin family: Essential regulators of actin dynamics. Annual Review of Cell and Developmental Biology, 15(1), 185–230. https://doi.org/10.1146/annurev.cellbio.15.1.185
  • Beaulieu, A. M. (2018). Memory responses by natural killer cells. Journal of Leukocyte Biology, 104(6), 1087–1096. https://doi.org/10.1002/JLB.1RI0917-366R
  • Busso, N., So, A., Chobaz-Péclat, V., Morard, C., Martinez-Soria, E., Talabot-Ayer, D., & Gabay, C. (2002). Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. Journal of Immunology, 168(2), 875–882. https://doi.org/10.4049/jimmunol.168.2.875
  • Caldefie-Chezet, F., Poulin, A., & Vasson, M. P. (2003). Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radical Research, 37(8), 809–814. https://doi.org/10.1080/1071576031000097526
  • Castriconi, R., Carrega, P., Dondero, A., Bellora, F., Casu, B., Regis, S., Ferlazzo, G., & Bottino, C. (2018). Molecular mechanisms directing migration and retention of natural killer cells in human tissues. Frontiers in Immunology, 9, 2324. https://doi.org/10.3389/fimmu.2018.02324
  • DesMarais, V., Ghosh, M., Eddy, R., & Condeelis, J. (2005). Cofilin takes the lead. Journal of Cell Science, 118(1), 19–26. https://doi.org/10.1242/jcs.01631
  • Dixit, V. D. (2008). Adipose-immune interactions during obesity and caloric restriction: Reciprocal mechanisms regulating immunity and health span. Journal of Leukocyte Biology, 84(4), 882–92. https://doi.org/10.1189/jlb.0108028
  • Emerging Risk Factors Collaboration. (2011). Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies. Lancet, 377(9771), 1085–1095. https://doi.org/10.1016/S0140-6736(11)60105-0
  • Fernandez-Riejos, P., Najib, S., Santos-Alvarez, J., Martín-Romero, C., Pérez-Pérez, A., González-Yanes, C., & Sánchez-Margalet, V. (2010). Role of leptin in the activation of immune cells. Mediators of Inflammation, 2010, 1–8. https://doi.org/10.1155/2010/568343
  • Fischer-Posovszky, P., Newell, F. S., Wabitsch, M., & Tornqvist, H. E. (2008). Human SGBS cells – a unique tool for studies of human fat cell biology. Obesity Facts, 1(4), 184–189. https://doi.org/10.1159/000145784
  • Glienke, W., Esser, R., Priesner, C., Suerth, J. D., Schambach, A., Wels, W. S., Grez, M., Kloess, S., Arseniev, L., & Koehl, U. (2015). Advantages and applications of CAR-expressing natural killer cells. Frontiers in Pharmacology, 6, 21. https://doi.org/10.3389/fphar.2015.00021
  • Howard, J. K., Lord, G. M., Matarese, G., Vendetti, S., Ghatei, M. A., Ritter, M. A., Lechler, R. I., & Bloom, S. R. (1999). Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. Journal of Clinical Investigation, 104(8), 1051–1059. https://doi.org/10.1172/JCI6762
  • Huebner, L., Engeli, S., Wrann, C. D., Goudeva, L., Laue, T., & Kielstein, H. (2013). Human NK cell subset functions are differentially affected by adipokines. Public Library of Science ONE, 8(9), e75703. https://doi.org/10.1371/journal.pone.0075703
  • Huet, G., Rajakylä, E. K., Viita, T., Skarp, K.-P., Crivaro, M., Dopie, J., & Vartiainen, M. K. (2013). Actin-regulated feedback loop based on Phactr4, PP1 and cofilin maintains the actin monomer pool. Journal of Cell Science, 126(2), 497–507. https://doi.org/10.1242/jcs.113241
  • Imai, K., Matsuyama, S., Miyake, S., Suga, K., & Nakachi, K. (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet, 356(9244), 1795–1799. https://doi.org/10.1016/S0140-6736(00)03231-1
  • Jahn, J., Spielau, M., Brandsch, C., Stangl, G. I., Delank, K.-S., Bähr, I., Berreis, T., Wrann, C. D., & Kielstein, H. (2015). Decreased NK cell functions in obesity can be reactivated by fat mass reduction. Obesity (Silver Spring), 23(11), 2233–2241. https://doi.org/10.1002/oby.21229
  • Kershaw, E. E., & Flier, J. S. (2004). Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology and Metabolism, 89(6), 2548–56. https://doi.org/10.1210/jc.2004-0395
  • Kim, J. Y., van de Wall, E., Laplante, M., Azzara, A., Trujillo, M. E., Hofmann, S. M., Schraw, T., Durand, J. L., Li, H., Li, G., Jelicks, L. A., Mehler, M. F., Hui, D. Y., Deshaies, Y., Shulman, G. I., Schwartz, G. J., & Scherer, P. E. (2007). Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigation, 117(9), 2621–2637. https://doi.org/10.1172/JCI31021
  • Krinninger, P., Ensenauer, R., Ehlers, K., Rauh, K., Stoll, J., Krauss-Etschmann, S., Hauner, H., & Laumen, H. (2014). Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. The Journal of Clinical Endocrinology and Metabolism, 99(7), 2500–2509. https://doi.org/10.1210/jc.2013-2611
  • Langers, I., Renoux, V.M., Thiry, M., Delvenne, P., & Jacobs, N. (2012). Natural killer cells: Role in local tumor growth and metastasis. Biologics, 6, 73–82. https://doi.org/10.2147/BTT.S23976
  • Lautenbach, A., Wrann, C. D., Jacobs, R., Müller, G., Brabant, G., & Nave, H. (2009). Altered phenotype of NK cells from obese rats can be normalized by transfer into lean animals. Obesity (Silver Spring), 17(10), 1848–1855. https://doi.org/10.1038/oby.2009.140
  • Mace, E. M., & Orange, J. S. (2014). Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proceedings of the National Academy of Sciences, 111(18), 6708–13. https://doi.org/10.1073/pnas.1314975111
  • Mandel, M. A., & Mahmoud, A. A. (1978). Impairment of cell-mediated immunity in mutation diabetic mice (db/db). Journal of Immunology, 120(4), 1375–1377. https://doi.org/10.4049/jimmunol.120.4.1375
  • Marelli-Berg, F. M., & Jangani, M. (2018). Metabolic regulation of leukocyte motility and migration. Journal of Leukocyte Biology, 104(2), 285–293. https://doi.org/10.1002/JLB.1MR1117-472R
  • McGough, A., Pope, B., Chiu, W., & Weeds, A. (1997). Cofilin changes the twist of F-actin: Implications for actin filament dynamics and cellular function. The Journal of Cell Biology, 138(4), 771–781. https://doi.org/10.1083/jcb.138.4.771
  • Mgrditchian, T., Sakalauskaite, G., Müller, T., Hoffmann, C., & Thomas, C. (2021). The multiple roles of actin-binding proteins at invadopodia. International Review of Cell and Molecular Biology, 360, 99–132.
  • Michelet, X., Dyck, L., Hogan, A., Loftus, R. M., Duquette, D., Wei, K., Beyaz, S., Tavakkoli, A., Foley, C., Donnelly, R., O’Farrelly, C., Raverdeau, M., Vernon, A., Pettee, W., O’Shea, D., Nikolajczyk, B. S., Mills, K. H. G., Brenner, M. B., Finlay, D., & Lynch, L. (2018). Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology, 19(12), 1330–1340. https://doi.org/10.1038/s41590-018-0251-7
  • Miller, J. S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S. A., Yun, G. H., Fautsch, S. K., McKenna, D., Le, C., Defor, T. E., Burns, L. J., Orchard, P. J., Blazar, B. R., Wagner, J. E., Slungaard, A., Weisdorf, D. J., Okazaki, I. J., & McGlave, P. B. (2005). Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood, 105(8), 3051–3057. https://doi.org/10.1182/blood-2004-07-2974
  • Mitchison, T. J., & Cramer, L. P. (1996). Actin-based cell motility and cell locomotion. Cell, 84(3), 371–379. https://doi.org/10.1016/S0092-8674(00)81281-7
  • Mitsuhashi, K., Hashimoto, Y., Tanaka, M., Toda, H., Matsumoto, S., Ushigome, E., Asano, M., Yamazaki, M., Oda, Y., & Fukui, M. (2017). Combined effect of body mass index and waist-height ratio on incident diabetes; a population based cohort study. Journal of Clinical Biochemistry and Nutrition, 61(2), 118–122. https://doi.org/10.3164/jcbn.16-116
  • Mondal, C., DiMartino, J. S., & Bravo-Cordero, J. J. (2021). Actin dynamics during tumor cell dissemination. International Review of Cell and Molecular Biology, 360, 65–98. https://doi.org/10.1016/bs.ircmb.2020.09.004
  • Montecucco, F., Bianchi, G., Gnerre, P., Bertolotto, M., Dallegri, F., & Ottonello, L. (2006). Induction of neutrophil chemotaxis by leptin: Crucial role for p38 and Src kinases. Annals of the New York Academy of Sciences, 1069(1), 463–471. https://doi.org/10.1196/annals.1351.045
  • Nave, H., Mueller, G., Siegmund, B., Jacobs, R., Stroh, T., Schueler, U., Hopfe, M., Behrendt, P., Buchenauer, T., Pabst, R., & Brabant, G. (2008). Resistance of janus kinase-2 dependent leptin signaling in natural killer (NK) cells: A novel mechanism of NK cell dysfunction in diet-induced obesity. Endocrinology, 149(7), 3370–3378. https://doi.org/10.1210/en.2007-1516
  • Nishita, M., Tomizawa, C., Yamamoto, M., Horita, Y., Ohashi, K., & Mizuno, K. (2005). Spatial and temporal regulation of cofilin activity by LIM kinase and slingshot is critical for directional cell migration. The Journal of Cell Biology, 171(2), 349–359. https://doi.org/10.1083/jcb.200504029
  • Ohashi, K. (2015). Roles of cofilin in development and its mechanisms of regulation. Development, Growth & Differentiation, 57(4), 275–90. https://doi.org/10.1111/dgd.12213
  • Organization, W.H. (2023). Fact Sheet: Obesity and Overweight. July 31, https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  • O’Shea, D., Cawood, T. J., O’Farrelly, C., & Lynch, L. (2010). Natural killer cells in obesity: Impaired function and increased susceptibility to the effects of cigarette smoke. Public Library of Science ONE, 5(1), e8660. https://doi.org/10.1371/journal.pone.0008660
  • Oswald, J., Büttner, M., Jasinski-Bergner, S., Jacobs, R., Rosenstock, P., & Kielstein, H. (2018). Leptin affects filopodia and cofilin in NK-92 cells in a dose- and time-dependent manner. European Journal of Histochemistry: EJH, 62(1), 2848. https://doi.org/10.4081/ejh.2018.2848
  • Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., & Zwahlen, M. (2008). Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet, 371(9612), 569–578. https://doi.org/10.1016/S0140-6736(08)60269-X
  • Rezvani, K., Rouce, R., Liu, E., & Shpall, E. (2017). Engineering natural killer cells for cancer immunotherapy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25(8), 1769–1781. https://doi.org/10.1016/j.ymthe.2017.06.012
  • Rosenberg, S. A., Lotze, M. T., Muul, L. M., Chang, A. E., Avis, F. P., Leitman, S., Linehan, W. M., Robertson, C. N., Lee, R. E., Rubin, J. T., Seipp, C. A., Simpson, C. G., & White, D. E. (1987). A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. The New England Journal of Medicine, 316(15), 889–897. https://doi.org/10.1056/NEJM198704093161501
  • Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., Posati, S., Rogaia, D., Frassoni, F., Aversa, F., Martelli, M. F., & Velardi, A. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 295(5562), 2097–2100. https://doi.org/10.1126/science.1068440
  • Shah, N. R., Braverman, E. R., & Nizami, Q. (2012). Measuring adiposity in patients: The utility of body mass index (BMI), percent body fat, and leptin. Public Library of Science ONE, 7(4), e33308. https://doi.org/10.1371/journal.pone.0033308
  • Shi, C., Cai, Y., Li, Y., Li, Y., Hu, N., Ma, S., Hu, S., Zhu, P., Wang, W., & Zhou, H. (2018). Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biology, 14, 59–71. https://doi.org/10.1016/j.redox.2017.08.013
  • Spielmann, J., Hanke, J., Knauf, D., Ben-Eliyahu, S., Jacobs, R., Stangl, G. I., Bähr, I., & Kielstein, H. (2017). Significantly enhanced lung metastasis and reduced organ NK cell functions in diet-induced obese rats. BMC Obesity, 4(1), 24. https://doi.org/10.1186/s40608-017-0161-5
  • Svitkina, T. M., & Borisy, G. G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of Cell Biology, 145(5), 1009–26. https://doi.org/10.1083/jcb.145.5.1009
  • Tian, L., Luo, N., Zhu, X., Chung, B.-H., Garvey, W. T., & Fu, Y. (2012). Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: Differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis, 221(1), 66–75. https://doi.org/10.1016/j.atherosclerosis.2011.12.014
  • Viel, S., Besson, L., Charrier, E., Marçais, A., Disse, E., Bienvenu, J., Walzer, T., & Dumontet, C. (2017). Alteration of natural killer cell phenotype and function in obese individuals. Clinical Immunology (Orlando, Fla), 177, 12–17. https://doi.org/10.1016/j.clim.2016.01.007
  • Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology, 9(5), 503–510. https://doi.org/10.1038/ni1582
  • Wabitsch, M., Brenner, R. E., Melzner, I., Braun, M., Möller, P., Heinze, E., Debatin, K.-M., & Hauner, H. (2001). Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 25(1), 8–15. https://doi.org/10.1038/sj.ijo.0801520
  • Wang, K., Wang, L., Wang, Y., Xiao, L., Wei, J., Hu, Y., Wang, D., & Huang, H. (2024). Reprogramming natural killer cells for cancer therapy. Molecular Therapy: The Journal of the American Society of Gene Therapy. https://doi.org/10.1016/j.ymthe.2024.01.027
  • Wrann, C. D., Laue, T., Hübner, L., Kuhlmann, S., Jacobs, R., Goudeva, L., & Nave, H. (2012). Short-term and long-term leptin exposure differentially affect human natural killer cell immune functions. American Journal of Physiology Endocrinology and Metabolism, 302(1), E108–16. https://doi.org/10.1152/ajpendo.00057.2011
  • Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., … Froguel, P. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine, 7(8), 941–946. https://doi.org/10.1038/90984
  • Yudkin, J. S., Stehouwer, C. D. A., Emeis, J. J., & Coppack, S. W. (1999). C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arteriosclerosis, Thrombosis, and Vascular Biology, 19(4), 972–978. https://doi.org/10.1161/01.ATV.19.4.972