49
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Insights into the Roles of Natural Killer Cells in Osteoarthritis

, , , , , , & show all

References

  • Adkisson, H. D., Milliman, C., Zhang, X., Mauch, K., Maziarz, R. T., & Streeter, P. R. (2010). Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Research, 4(1), 57–68. https://doi.org/10.1016/j.scr.2009.09.004
  • Alahdal, M., Zhang, H., Huang, R., Sun, W., Deng, Z., Duan, L., Ouyang, H., & Wang, D. (2021). Potential efficacy of dendritic cell immunomodulation in the treatment of osteoarthritis. Rheumatology (Oxford, England), 60(2), 507–517. https://doi.org/10.1093/rheumatology/keaa745
  • Atukorala, I., Kwoh, C. K., Guermazi, A., Roemer, F. W., Boudreau, R. M., Hannon, M. J., & Hunter, D. J. (2016). Synovitis in knee osteoarthritis: A precursor of disease? Annals of the Rheumatic Diseases, 75(2), 390–395. https://doi.org/10.1136/annrheumdis-2014-205894
  • Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N., & Dougados, M. (2005). Synovitis: A potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis and Cartilage, 13(5), 361–367. https://doi.org/10.1016/j.joca.2005.01.005
  • Belizário, J. E., Neyra, J. M., & Setúbal Destro Rodrigues, M. F. (2018). When and how NK cell-induced programmed cell death benefits immunological protection against intracellular pathogen infection. Innate Immunity, 24(8), 452–465. https://doi.org/10.1177/1753425918800200
  • Bellora, F., Castriconi, R., Dondero, A., Reggiardo, G., Moretta, L., Mantovani, A., Moretta, A., Bottino, C. (2010). The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21659–21664. https://doi.org/10.1073/pnas.1007654108
  • Bellucci, F., Cucchi, P., Catalani, C., Giuliani, S., Meini, S., & Maggi, C. A. (2009). Novel effects mediated by bradykinin and pharmacological characterization of bradykinin B2 receptor antagonism in human synovial fibroblasts. British Journal of Pharmacology, 158(8), 1996–2004. https://doi.org/10.1111/j.1476-5381.2009.00511.x
  • Benigni, G., Dimitrova, P., Antonangeli, F., Sanseviero, E., Milanova, V., Blom, A., van Lent, P., Morrone, S., Santoni, A., & Bernardini, G. (2017). CXCR3/CXCL10 axis regulates neutrophil–NK cell cross-talk determining the severity of experimental osteoarthritis. Journal of Immunology (Baltimore, Md: 1950), 198(5), 2115–2124. https://doi.org/10.4049/jimmunol.1601359
  • Bhatnagar, N., Hong, H. S., Krishnaswamy, J. K., Haghikia, A., Behrens, G. M., Schmidt, R. E., & Jacobs, R. (2010). Cytokine-activated NK cells inhibit PMN apoptosis and preserve their functional capacity. Blood, 116(8), 1308–1316. https://doi.org/10.1182/blood-2010-01-264903
  • Białoszewska, A., Niderla-Bielińska, J., Hyc, A., Osiecka-Iwan, A., Radomska-Leśniewska, D. M., Kieda, C., & Malejczyk, J. (2009). Chondrocyte-specific phenotype confers susceptibility of rat chondrocytes to lysis by NK cells. Cellular immunology, 258(2), 197–203. https://doi.org/10.1016/j.cellimm.2009.05.004
  • Białoszewska, A., Olkowska-Truchanowicz, J., Bocian, K., Osiecka-Iwan, A., Czop, A., Kieda, C., & Malejczyk, J. (2018). A role of NKR-P1A (CD161) and lectin-like transcript 1 in natural cytotoxicity against human articular chondrocytes. Journal of Immunology (Baltimore, Md: 1950), 200(2), 715–724. https://doi.org/10.4049/jimmunol.1700387
  • Björkström, N. K., Ljunggren, H. G., & Michaëlsson, J. (2016). Emerging insights into natural killer cells in human peripheral tissues. Nature Reviews Immunology, 16(5), 310–320. https://doi.org/10.1038/nri.2016.34
  • Björkström, N. K., Riese, P., Heuts, F., Andersson, S., Fauriat, C., Ivarsson, M. A., Björklund, A. T., Flodström-Tullberg, M., Michaëlsson, J., Rottenberg, M. E., Guzmán, C. A., Ljunggren, H.-G., & Malmberg, K.-J. (2010). Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood, 116(19), 3853–3864. https://doi.org/10.1182/blood-2010-04-281675
  • Bonamichi, B., & Lee, J. (2017). Unusual suspects in the development of obesity-induced inflammation and insulin resistance: NK cells, iNKT cells, and ILCs. Diabetes & metabolism journal, 41(4), 229–250. https://doi.org/10.4093/dmj.2017.41.4.229
  • Boyce, B. F., & Xing, L. (2008). Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry and Biophysics, 473(2), 139–146. https://doi.org/10.1016/j.abb.2008.03.018
  • Burmester, G. R., Menche, D., Merryman, P., Klein, M., & Winchester, R. (1983). Application of monoclonal antibodies to the characterization of cells eluted from human articular cartilage. Expression of Ia antigens in certain diseases and identification of an 85-kD cell surface molecule accumulated in the pericellular matrix. Arthritis and Rheumatism, 26(10), 1187–1195. https://doi.org/10.1002/art.1780261003
  • Cafferata, E. A., Monasterio, G., Castillo, F., Carvajal, P., Flores, G., Díaz, W., Fuentes, A. D., & Vernal, R. (2021). Overexpression of MMPs, cytokines, and RANKL/OPG in temporomandibular joint osteoarthritis and their association with joint pain, mouth opening, and bone degeneration: A preliminary report. Oral diseases, 27(4), 970–980. https://doi.org/10.1111/odi.13623
  • Chaney, S., Vergara, R., Qiryaqoz, Z., Suggs, K., & Akkouch, A. (2022). The involvement of neutrophils in the pathophysiology and treatment of osteoarthritis. Biomedicines, 10(7), 1604. https://doi.org/10.3390/biomedicines10071604
  • Chen, S., Chai, X., & Wu, X. (2022). Bioinformatical analysis of the key differentially expressed genes and associations with immune cell infiltration in development of endometriosis. BMC Genomic Data, 23(1), 20. https://doi.org/10.1186/s12863-022-01036-y
  • Chen, J., Chen, S., Cai, D., Wang, Q., & Qin, J. (2022). The role of Sirt6 in osteoarthritis and its effect on macrophage polarization. Bioengineered, 13(4), 9677–9689. https://doi.org/10.1080/21655979.2022.2059610
  • Chiesa, S., Tomasello, E., Vivier, E., & Vély, F. (2005). Coordination of activating and inhibitory signals in natural killer cells. Molecular immunology, 42(4), 477–484. https://doi.org/10.1016/j.molimm.2004.07.030
  • Childs, B. G., Durik, M., Baker, D. J., & van Deursen, J. M. (2015). Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 21(12), 1424–1435. https://doi.org/10.1038/nm.4000
  • Cooper, M. A., Elliott, J. M., Keyel, P. A., Yang, L., Carrero, J. A., & Yokoyama, W. M. (2009). Cytokine-induced memory-like natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1915–1919. https://doi.org/10.1073/pnas.0813192106
  • Croft, A. P., Campos, J., Jansen, K., Turner, J. D., Marshall, J., Attar, M., Savary, L., Wehmeyer, C., Naylor, A. J., Kemble, S., Begum, J., Dürholz, K., Perlman, H., Barone, F., McGettrick, H. M., Fearon, D. T., Wei, K., Raychaudhuri, S., Filer, A., … Buckley, C. D. (2019). Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature, 570(7760), 246–251. https://doi.org/10.1038/s41586-019-1263-7
  • Dai, M., Sui, B., Xue, Y., Liu, X., & Sun, J. (2018). Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials, 180, 91–103. https://doi.org/10.1016/j.biomaterials.2018.07.011
  • Danks, L., Komatsu, N., Guerrini, M., Sawa, S., Armaka, M., Kollias, G., Nakashima, T., & Takayanagi, H. (2016). RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Annals of the Rheumatic Diseases, 75(6), 1187–1195. https://doi.org/10.1136/annrheumdis-2014-207137
  • de Jong, H., Berlo, S. E., Hombrink, P., Otten, H. G., van Eden, W., Lafeber, F. P., Heurkens, A. H. M., Bijlsma, J. W. J., Glant, T. T., & Prakken, B. J. (2010). Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Annals of the Rheumatic Diseases, 69(1), 255–262. https://doi.org/10.1136/ard.2008.103978
  • Della Chiesa, M., Vitale, M., Carlomagno, S., Ferlazzo, G., Moretta, L., & Moretta, A. (2003). The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. European Journal of Immunology, 33(6), 1657–1666. https://doi.org/10.1002/eji.200323986
  • Dickerson, T. J., Suzuki, E., Stanecki, C., Shin, H. S., Qui, H., & Adamopoulos, I. E. (2012). Rheumatoid and pyrophosphate arthritis synovial fibroblasts induce osteoclastogenesis independently of RANKL, TNF and IL-6. Journal of Autoimmunity, 39(4), 369–376. https://doi.org/10.1016/j.jaut.2012.06.001
  • Dimmek, D. J., Korallus, C., Buyny, S., Christoph, G., Lichtinghagen, R., Jacobs, R., & Nugraha, B. (2021). Brain-derived neurotrophic factor and immune cells in osteoarthritis, chronic low back pain, and chronic widespread pain patients: association with anxiety and depression. Medicina (Kaunas, Lithuania), 57(4), 327. https://doi.org/10.3390/medicina57040327
  • Dogra, P., Rancan, C., Ma, W., Toth, M., Senda, T., Carpenter, D. J., Kubota, M., Matsumoto, R., Thapa, P., Szabo, P. A., Li Poon, M. M., Li, J., Arakawa-Hoyt, J., Shen, Y., Fong, L., Lanier, L. L., & Farber, D. L. (2020). Tissue determinants of human NK cell development, function, and residence. Cell, 180(4), 749–763.e713. https://doi.org/10.1016/j.cell.2020.01.022
  • Doi, K., Murata, K., Ito, S., Suzuki, A., Terao, C., Ishie, S., Umemoto, A., Murotani, Y., Nishitani, K., Yoshitomi, H., Fujii, T., Watanabe, R., Hashimoto, M., Murakami, K., Tanaka, M., Ito, H., Park‐Min, K.-H., Ivashkiv, L. B., Morinobu, A., & Matsuda, S. (2022). Role of lysine-specific demethylase 1 in metabolically integrating osteoclast differentiation and inflammatory bone resorption through hypoxia-inducible factor 1α and E2F1. Arthritis & Rheumatology (Hoboken, NJ), 74(6), 948–960. https://doi.org/10.1002/art.42074
  • Drvar, V., Ćurko-Cofek, B., Karleuša, L., Aralica, M., Rogoznica, M., Kehler, T., Legović, D., Rukavina, D., & Laskarin, G. (2022). Granulysin expression and granulysin-mediated apoptosis in the peripheral blood of osteoarthritis patients. Biomedical Reports, 16(5), 44. https://doi.org/10.3892/br.2022.1527
  • Estell, E. G., Silverstein, A. M., Stefani, R. M., Lee, A. J., Murphy, L. A., Shah, R. P., Ateshian, G. A., & Hung, C. T. (2019). Cartilage wear particles induce an inflammatory response similar to cytokines in human fibroblast-like synoviocytes. Journal of Orthopaedic Research, 37(9), 1979–1987. https://doi.org/10.1002/jor.24340
  • Fahy, N., de Vries van Melle, M. L., Lehmann, J., Wei, W., Grotenhuis, N., Farrell, E., van der Kraan, P. M., Murphy, J. M., Bastiaansen-Jenniskens, Y. M., & van Osch, G. J. V. M. (2014). Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis and Cartilage, 22(8), 1167–1175. https://doi.org/10.1016/j.joca.2014.05.021
  • Fernandez, N. C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., & Zitvogel, L. (1999). Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Medicine, 5(4), 405–411. https://doi.org/10.1038/7403
  • Freud, A. G., Mundy-Bosse, B. L., Yu, J., & Caligiuri, M. A. (2017). The broad spectrum of human natural killer cell diversity. Immunity, 47(5), 820–833. https://doi.org/10.1016/j.immuni.2017.10.008
  • Gertzbein, S. D., & Lance, E. M. (1976). The stimulation of lymphocytes by chondrocytes in mixed cultures. Clinical and Experimental Immunology, 24(1), 102–109.
  • Gharavi, A. T., Hanjani, N. A., Movahed, E., & Doroudian, M. (2022). The role of macrophage subtypes and exosomes in immunomodulation. Cellular & molecular biology letters, 27(1), 83. https://doi.org/10.1186/s11658-022-00384-y
  • Glyn-Jones, S., Palmer, A. J., Agricola, R., Price, A. J., Vincent, T. L., Weinans, H., & Carr, A. J. (2015). Osteoarthritis. Lancet, 386(9991), 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3
  • Griffin, T. M., & Scanzello, C. R. (2019). Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clinical and Experimental Rheumatology, 37(Suppl 5), 57–63.
  • Gross, C. C., Schulte-Mecklenbeck, A., Rünzi, A., Kuhlmann, T., Posevitz-Fejfár, A., Schwab, N., Schneider-Hohendorf, T., Herich, S., Held, K., Konjević, M., Hartwig, M., Dornmair, K., Hohlfeld, R., Ziemssen, T., Klotz, L., Meuth, S. G., & Wiendl, H. (2016). Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proceedings of the National Academy of Sciences of the United States of America, 113(21), E2973–2982. https://doi.org/10.1073/pnas.1524924113
  • Haseeb, A., & Haqqi, T. M. (2013). Immunopathogenesis of osteoarthritis. Clinical Immunology (Orlando, Fla), 146(3), 185–196. https://doi.org/10.1016/j.clim.2012.12.011
  • Hou, S. M., Chen, P. C., Lin, C. M., Fang, M. L., Chi, M. C., & Liu, J. F. (2020). CXCL1 contributes to IL-6 expression in osteoarthritis and rheumatoid arthritis synovial fibroblasts by CXCR2, c-raf, MAPK, and AP-1 pathway. Arthritis Research & Therapy, 22(1), 251. https://doi.org/10.1186/s13075-020-02331-8
  • Hua, S. L., Liang, J. Q., Hu, G. F., Yang, X. R., Fang, D. L., & Lu, J. L. (2022). Constructing a competing endogenous RNA network for osteoarthritis. Annals of Translational Medicine, 10(3), 147. https://doi.org/10.21037/atm-21-6711
  • Hügle, T., & Geurts, J. (2017). What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford, England), 56(9), 1461–1471. https://doi.org/10.1093/rheumatology/kew389
  • Hunter, D., & Bierma-Zeinstra, S. (2019). Osteoarthritis. Lancet, 393(10182), 1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9
  • Hunter, D. J., March, L., & Chew, M. (2020). Osteoarthritis in 2020 and beyond: A lancet commission. Lancet, 396(10264), 1711–1712. https://doi.org/10.1016/S0140-6736(20)32230-3
  • Huss, R., Huddleston, J., Goodman, S., Butcher, E., & Zabel, B. (2010). Synovial tissue–infiltrating natural killer cells in osteoarthritis and periprosthetic inflammation. Arthritis & Rheumatism, 62(12), 3799–3805. https://doi.org/10.1002/art.27751
  • Huss, R. S., Huddleston, J. I., Goodman, S. B., Butcher, E. C., & Zabel, B. A. (2010). Synovial tissue-infiltrating natural killer cells in osteoarthritis and periprosthetic inflammation. Arthritis and Rheumatism, 62(12), 3799–3805. https://doi.org/10.1002/art.27751
  • Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W., & Raulet, D. H. (2013). p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. Journal of Experimental Medicine, 210(10), 2057–2069. https://doi.org/10.1084/jem.20130783
  • Jaime, P., García-Guerrero, N., Estella, R., Pardo, J., García-Álvarez, F., & Martinez-Lostao, L. (2017). CD56(+)/CD16(-) natural killer cells expressing the inflammatory protease granzyme a are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis and Cartilage, 25(10), 1708–1718. https://doi.org/10.1016/j.joca.2017.06.007
  • Jain, S., Gupta, S., & Naugraiya, T. (2021). Changes in hematobiochemical, radiological, and synovial fluid parameter in patients of osteoarthritis knee with effusion: A prospective observational study. Journal of Orthopaedic Case Reports, 11(8), 87–91. https://doi.org/10.13107/jocr.2021.v11.i08.2380
  • Jangra, A., Kothari, A., Sarma, P., Medhi, B., Omar, B. J., & Kaushal, K. (2022). Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells, 11(9), 1500. https://doi.org/10.3390/cells11091500
  • Jeon, O. H., David, N., Campisi, J., & Elisseeff, J. H. (2018). Senescent cells and osteoarthritis: A painful connection. The Journal of Clinical Investigation, 128(4), 1229–1237. https://doi.org/10.1172/JCI95147
  • Jiang, W., Chai, N. R., Maric, D., & Bielekova, B. (2011). Unexpected role for granzyme K in CD56bright NK cell-mediated immunoregulation of multiple sclerosis. Journal of Immunology (Baltimore, Md: 1950), 187(2), 781–790. https://doi.org/10.4049/jimmunol.1100789
  • Kaneva, M. (2022). Neutrophil elastase and its inhibitors-overlooked players in osteoarthritis. The FEBS Journal, 289(1), 113–116. https://doi.org/10.1111/febs.16194
  • Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P., & Fahmi, H. (2011). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 7(1), 33–42. https://doi.org/10.1038/nrrheum.2010.196
  • Kim, K. H., Yu, H. T., Hwang, I., Park, S., Park, S.-H., Kim, S., & Shin, E.-C. (2019). Phenotypic and functional analysis of human NK cell subpopulations according to the expression of FcεRIγ and NKG2C. Frontiers in Immunology, 10, 2865. https://doi.org/10.3389/fimmu.2019.02865
  • Kloss, M., Decker, P., Baltz, K. M., Baessler, T., Jung, G., Rammensee, H.-G., Steinle, A., Krusch, M., & Salih, H. R. (2008). Interaction of monocytes with NK cells upon toll-like receptor-induced expression of the NKG2D ligand MICA. Journal of Immunology (Baltimore, Md: 1950), 181(10), 6711–6719. https://doi.org/10.4049/jimmunol.181.10.6711
  • Knights, A. J., Redding, S. J., & Maerz, T. (2023). Inflammation in osteoarthritis: The latest progress and ongoing challenges. Current Opinion in Rheumatology, 35(2), 128–134. https://doi.org/10.1097/BOR.0000000000000923
  • Kobayashi, M., Squires, G. R., Mousa, A., Tanzer, M., Zukor, D. J., Antoniou, J., Feige, U., & Poole, A. R. (2005). Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthritis and Rheumatism, 52(1), 128–135. https://doi.org/10.1002/art.20776
  • Korkmaz, B., Horwitz, M. S., Jenne, D. E., Gauthier, F., & Sibley, D. (2010). Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological Reviews, 62(4), 726–759. https://doi.org/10.1124/pr.110.002733
  • Lance, E. M., Kimura, L. H., & Manibog, C. N. (1993). The expression of major histocompatibility antigens on human articular chondrocytes. Clinical Orthopaedics and Related Research, 291(291), 266–282. https://doi.org/10.1097/00003086-199306000-00032
  • Laroni, A., Gandhi, R., Beynon, V., Weiner, H. L., & Mosley, R. L. (2011). IL-27 imparts immunoregulatory function to human NK cell subsets. Public Library of Science One, 6(10), e26173. https://doi.org/10.1371/journal.pone.0026173
  • Lee, B. C., Kim, M. S., Pae, M., Yamamoto, Y., Eberlé, D., Shimada, T., Kamei, N., Park, H.-S., Sasorith, S., Woo, J., You, J., Mosher, W., Brady, H. M., Shoelson, S., & Lee, J. (2016). Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell metabolism, 23(4), 685–698. https://doi.org/10.1016/j.cmet.2016.03.002
  • Lei, L., Meng, L., Changqing, X., Chen, Z., Gang, Y., & Shiyuan, F. (2022). Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights. Open life sciences, 17(1), 695–709. https://doi.org/10.1515/biol-2022-0075
  • Liang, J., Liu, L., Feng, H., Yue, Y., Zhang, Y., Wang, Q., & Zhao, H. (2023). Therapeutics of osteoarthritis and pharmacological mechanisms: A focus on RANK/RANKL signaling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 167, 115646. https://doi.org/10.1016/j.biopha.2023.115646
  • Li, Y. S., Luo, W., Zhu, S. A., & Lei, G. H. (2017). T cells in osteoarthritis: Alterations and beyond. Frontiers in Immunology, 8, 356. https://doi.org/10.3389/fimmu.2017.00356
  • Liu, X., Cai, H. X., Cao, P. Y., Feng, Y., Jiang, H.-H., Liu, L., Ke, J., & Long, X. (2020). TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. Journal of Cellular and Molecular Medicine, 24(19), 11489–11499. https://doi.org/10.1111/jcmm.15763
  • Liu, Y., Zhang, Z., Li, T., Xu, H., & Zhang, H. (2022). Senescence in osteoarthritis: From mechanism to potential treatment. Arthritis Research & Therapy, 24(1), 174. https://doi.org/10.1186/s13075-022-02859-x
  • Loeser, R. F., Collins, J. A., & Diekman, B. O. (2016). Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 12(7), 412–420. https://doi.org/10.1038/nrrheum.2016.65
  • Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis and Rheumatism, 64(6), 1697–1707. https://doi.org/10.1002/art.34453
  • Mace, E. M. (2023). Human natural killer cells: Form, function, and development. The Journal of Allergy and Clinical Immunology, 151(2), 371–385. https://doi.org/10.1016/j.jaci.2022.09.022
  • Mahmood, S., Upreti, D., Sow, I., Amari, A., Nandagopal, S., & Kung, S. K. (2015). Bidirectional interactions of NK cells and dendritic cells in immunotherapy: Current and future perspective. Immunotherapy, 7(3), 301–308. https://doi.org/10.2217/imt.14.122
  • Malafoglia, V., Ilari, S., Gioia, C., Vitiello, L., Tenti, M., Iannuccelli, C., Cristiani, C. M., Garofalo, C., Passacatini, L. C., Viglietto, G., Scavalli, A. S., Tomino, C., Mollace, V., Raffaeli, W., DiFranco, M., & Muscoli, C. (2023). An observational study on chronic pain biomarkers in fibromyalgia and osteoarthritis patients: Which role for mu opioid receptor’s expression on NK cells? Biomedicines, 11(3), 931. https://doi.org/10.3390/biomedicines11030931
  • Malejczyk, J. (1989). Natural anti-chondrocyte cytotoxicity of normal human peripheral blood mononuclear cells. Clinical Immunology and Immunopathology, 50(1 Pt 1), 42–52. https://doi.org/10.1016/0090-1229(89)90220-1
  • Malejczyk, J., Kamiński, M. J., Malejczyk, M., & Majewski, S. (1985). Natural cell-mediated cytotoxic activity against isolated chondrocytes in the mouse. Clinical and Experimental Immunology, 59(1), 110–116.
  • Malejczyk, J., Malejczyk, M., Urbanski, A., & Luger, T. (1992). Production of natural killer cell activity-augmenting factor (interleukin-6) by human epiphyseal chondrocytes. Arthritis & Rheumatism, 35(6), 706–713. https://doi.org/10.1002/art.1780350617
  • Malejczyk, J., & Moskalewski, S. (1988). Effect of immunosuppression on survival and growth of cartilage produced by transplanted allogeneic epiphyseal chondrocytes. Clinical Orthopaedics and Related Research, 232(232), 292–303. https://doi.org/10.1097/00003086-198807000-00037
  • Malejczyk, J., & Romaniuk, A. (1989). Reactivity of normal rat epiphyseal chondrocytes with monoclonal antibodies recognizing different leucocyte markers. Clinical and Experimental Immunology, 75(3), 477–480.
  • Mancarella, L., Addimanda, O., Cavallari, C., & Meliconi, R. (2017). Synovial inflammation drives structural damage in hand osteoarthritis: A narrative literature review. Current Rheumatology Reviews, 13(1), 43–50. https://doi.org/10.2174/1573397112666160909105903
  • Marcenaro, E., Carlomagno, S., Pesce, S., Moretta, A., & Sivori, S. (2012). NK/DC crosstalk in anti-viral response. Advances in Experimental Medicine and Biology, 946, 295–308. https://doi.org/10.1007/978-1-4614-0106-3_17
  • Martin, J. A., Brown, T. D., Heiner, A. D., & Buckwalter, J. A. (2004). Chondrocyte senescence, joint loading and osteoarthritis. Clinical Orthopaedics and Related Research, 427, S96–103. https://doi.org/10.1097/01.blo.0000143818.74887.b1
  • Maruotti, N., Corrado, A., & Cantatore, F. P. (2017). Osteoblast role in osteoarthritis pathogenesis. Journal of Cellular Physiology, 232(11), 2957–2963. https://doi.org/10.1002/jcp.25969
  • Mathiessen, A., & Conaghan, P. G. (2017). Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Research & Therapy, 19(1), 18. https://doi.org/10.1186/s13075-017-1229-9
  • Matsuoka, N., Eguchi, K., Kawakami, A., Tsuboi, M., Kawabe, Y., Aoyagi, T., & Nagataki, S. (1996). Inhibitory effect of clarithromycin on costimulatory molecule expression and cytokine production by synovial fibroblast-like cells. Clinical and Experimental Immunology, 104(3), 501–508. https://doi.org/10.1046/j.1365-2249.1996.46752.x
  • McQueen, K. L., & Parham, P. (2002). Variable receptors controlling activation and inhibition of NK cells. Current Opinion in Immunology, 14(5), 615–621. https://doi.org/10.1016/S0952-7915(02)00380-1
  • Moos, V., Fickert, S., Müller, B., Weber, U., & Sieper, J. (1999). Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. The Journal of Rheumatology, 26(4), 870–879.
  • Morandi, F., Horenstein, A. L., Chillemi, A., Quarona, V., Chiesa, S., Imperatori, A., Zanellato, S., Mortara, L., Gattorno, M., Pistoia, V., & Malavasi, F. (2015). CD56brightCD16− NK cells produce adenosine through a CD38-mediated pathway and act as regulatory cells inhibiting Autologous CD4+ T cell proliferation. Journal of Immunology (Baltimore, Md: 1950), 195(3), 965–972. https://doi.org/10.4049/jimmunol.1500591
  • Moretta, L., Locatelli, F., Pende, D., Sivori, S., Falco, M., Bottino, C., Mingari, M. C., & Moretta, A. (2011). Human NK receptors: From the molecules to the therapy of high risk leukemias. FEBS Letters, 585(11), 1563–1567. https://doi.org/10.1016/j.febslet.2011.04.061
  • Mostafa, R. E., & Salama, A. A. A. (2023). Eplerenone modulates the inflammatory response in monosodium iodoacetate-induced knee osteoarthritis in rats: Involvement of RANKL/OPG axis. Life Sciences, 316, 121405. https://doi.org/10.1016/j.lfs.2023.121405
  • Motta, F., Barone, E., Sica, A., & Selmi, C. (2023). Inflammaging and osteoarthritis. Clinical Reviews in Allergy & Immunology, 64(2), 222–238. https://doi.org/10.1007/s12016-022-08941-1
  • Nanus, D. E., Wijesinghe, S. N., Pearson, M. J., Hadjicharalambous, M. R., Rosser, A., Davis, E. T., Lindsay, M. A., & Jones, S. W. (2020). Regulation of the inflammatory synovial fibroblast phenotype by metastasis-associated lung adenocarcinoma transcript 1 long noncoding RNA in obese patients with osteoarthritis. Arthritis & Rheumatology (Hoboken, NJ), 72(4), 609–619. https://doi.org/10.1002/art.41158
  • Nedvetzki, S., Sowinski, S., Eagle, R. A., Harris, J., Vely, F., Pende, D., Trowsdale, J., Vivier, E., Gordon, S., & Davis, D. M. (2007). Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood, 109(9), 3776–3785. https://doi.org/10.1182/blood-2006-10-052977
  • Nie, F., Ding, F., Chen, B., Huang, S., Liu, Q., & Xu, C. (2019). Dendritic cells aggregate inflammation in experimental osteoarthritis through a toll-like receptor (TLR)-dependent machinery response to challenges. Life Sciences, 238, 116920. https://doi.org/10.1016/j.lfs.2019.116920
  • Nielsen, N., Ødum, N., Ursø, B., Lanier, L. L., & Spee, P. (2012). Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. Public Library of Science One, 7(2), e31959. https://doi.org/10.1371/journal.pone.0031959
  • Osiecka, A., Malejczyk, J., & Moskalewski, S. (1990). Cartilage transplants in normal and preimmunized mice. Archivum Immunologiae et Therapiae experimentalis, 38(5–6), 461–473.
  • Pearson, M. J., Herndler-Brandstetter, D., Tariq, M. A., Nicholson, T. A., Philp, A. M., Smith, H. L., Davis, E. T., Jones, S. W., & Lord, J. M. (2017). IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Scientific Reports, 7(1), 3451. https://doi.org/10.1038/s41598-017-03759-w
  • Poli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56bright natural killer (NK) cells: An important NK cell subset. Immunology, 126(4), 458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.x
  • Poznanski, S. M., & Ashkar, A. A. (2019). What defines NK cell functional fate: Phenotype or metabolism? Frontiers in Immunology, 10, 1414. https://doi.org/10.3389/fimmu.2019.01414
  • Qu, X. Q., Wang, W. J., Tang, S. S., Liu, Y., & Wang, J. L. (2015). Correlation between interleukin-6 expression in articular cartilage bone and osteoarthritis. Genetics and Molecular Research: GMR, 14(4), 14189–14195. https://doi.org/10.4238/2015.November.13.2
  • Raghu, H., Lepus, C. M., Wang, Q., Wong, H. H., Lingampalli, N., Oliviero, F., Punzi, L., Giori, N. J., Goodman, S. B., Chu, C. R., Sokolove, J. B., & Robinson, W. H. (2017). CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Annals of the Rheumatic Diseases, 76(5), 914–922. https://doi.org/10.1136/annrheumdis-2016-210426
  • Rao, S., Cronin, S. J. F., Sigl, V., & Penninger, J. M. (2018). RANKL and RANK: From mammalian physiology to cancer treatment. Trends in Cell Biology, 28(3), 213–223. https://doi.org/10.1016/j.tcb.2017.11.001
  • Raulet, D. H. (2003). Roles of the NKG2D immunoreceptor and its ligands. Nature Reviews Immunology, 3(10), 781–790. https://doi.org/10.1038/nri1199
  • Regis, S., Dondero, A., Spaggiari, G., Serra, M., Caliendo, F., Bottino, C., & Castriconi, R. (2022). miR-24-3p down-regulates the expression of the apoptotic factors FasL and BIM in human natural killer cells. Cellular Signalling, 98, 110415. https://doi.org/10.1016/j.cellsig.2022.110415
  • Robinson, W. H., Lepus, C. M., Wang, Q., Raghu, H., Mao, R., Lindstrom, T. M., & Sokolove, J. (2016). Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 12(10), 580–592. https://doi.org/10.1038/nrrheum.2016.136
  • Sagiv, A., Burton, D. G., Moshayev, Z., Vadai, E., Wensveen, F., Ben-Dor, S., Golani, O., Polic, B., & Krizhanovsky, V. (2016). NKG2D ligands mediate immunosurveillance of senescent cells. Aging, 8(2), 328–344. https://doi.org/10.18632/aging.100897
  • Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E., & Guma, M. (2022). Synovial inflammation in osteoarthritis progression. Nature Reviews Rheumatology, 18(5), 258–275. https://doi.org/10.1038/s41584-022-00749-9
  • Scanzello, C. R., Umoh, E., Pessler, F., Diaz-Torne, C., Miles, T., DiCarlo, E., Potter, H. G., Mandl, L., Marx, R., Rodeo, S., Goldring, S. R., & Crow, M. K. (2009). Local cytokine profiles in knee osteoarthritis: Elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis and Cartilage, 17(8), 1040–1048. https://doi.org/10.1016/j.joca.2009.02.011
  • Schulz, U., Kreutz, M., Multhoff, G., Stoelcker, B., Köhler, M., Andreesen, R., & Holler, E. (2010). Interleukin-10 promotes NK cell killing of autologous macrophages by stimulating expression of NKG2D ligands. Scandinavian Journal of Immunology, 72(4), 319–331. https://doi.org/10.1111/j.1365-3083.2010.02435.x
  • Sebastian, A., Hum, N. R., McCool, J. L., Wilson, S. P., Murugesh, D. K., Martin, K. A., Rios-Arce, N. D., Amiri, B., Christiansen, B. A., & Loots, G. G. (2022). Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Frontiers in Immunology, 13, 938075. https://doi.org/10.3389/fimmu.2022.938075
  • Sellam, J., & Berenbaum, F. (2010). The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nature Reviews Rheumatology, 6(11), 625–635. https://doi.org/10.1038/nrrheum.2010.159
  • Semenistaja, S., Skuja, S., Kadisa, A., & Groma, V. (2023). Healthy and osteoarthritis-affected joints facing the cellular crosstalk. International Journal of Molecular Sciences, 24(4), 4120. https://doi.org/10.3390/ijms24044120
  • Siew, Y., Neo, S., Yew, H., Lim, S.-W., Ng, Y.-C., Lew, S.-M., Seetoh, W.-G., Seow, S.-V., & Koh, H.-L. (2015). Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. International Immunology, 27(12), 621–632. https://doi.org/10.1093/intimm/dxv041
  • Sokolove, J., & Lepus, C. M. (2013). Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease, 5(2), 77–94. https://doi.org/10.1177/1759720X12467868
  • Sommaggio, R., Cohnen, A., Watzl, C., & Costa, C. (2012). Multiple receptors trigger human NK cell-mediated cytotoxicity against porcine chondrocytes. Journal of Immunology (Baltimore, Md: 1950), 188(5), 2075–2083. https://doi.org/10.4049/jimmunol.1100433
  • Thorén, F. B., Riise, R. E., Ousbäck, J., Della Chiesa, M., Alsterholm, M., Marcenaro, E., Pesce, S., Prato, C., Cantoni, C., Bylund, J., Moretta, L., & Moretta, A. (2012). Human NK cells induce neutrophil apoptosis via an NKp46- and fas-dependent mechanism. Journal of Immunology (Baltimore, Md: 1950), 188(4), 1668–1674. https://doi.org/10.4049/jimmunol.1102002
  • Tiku, M. L., Liu, S., Weaver, C. W., Teodorescu, M., & Skosey, J. L. (1985). Class II histocompatibility antigen-mediated immunologic function of normal articular chondrocytes. Journal of Immunology (Baltimore, Md: 1950), 135(5), 2923–2928. https://doi.org/10.4049/jimmunol.135.5.2923
  • Turner, J. D., & Filer, A. (2015). The role of the synovial fibroblast in rheumatoid arthritis pathogenesis. Current Opinion in Rheumatology, 27(2), 175–182. https://doi.org/10.1097/BOR.0000000000000148
  • Vina, E. R., & Kwoh, C. K. (2018). Epidemiology of osteoarthritis: Literature update. Current Opinion in Rheumatology, 30(2), 160–167. https://doi.org/10.1097/BOR.0000000000000479
  • Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology, 9(5), 503–510. https://doi.org/10.1038/ni1582
  • Wang, G., Jing, W., Bi, Y., Li, Y., Ma, L., Yang, H., & Zhang, Y. (2021). viaNeutrophil elastase induces chondrocyte apoptosis and facilitates the occurrence of osteoarthritis caspase signaling pathway. Frontiers in Pharmacology, 12, 666162. https://doi.org/10.3389/fphar.2021.666162
  • Wang, H., Wang, Q., Yang, M., Yang, L., Wang, W., Ding, H., Zhang, D., Xu, J., Tang, X., Ding, H., & Wang, Q. (2018). Histomorphology and innate immunity during the progression of osteoarthritis: Does synovitis affect cartilage degradation? Journal of Cellular Physiology, 233(2), 1342–1358. https://doi.org/10.1002/jcp.26011
  • Wang, H., Zeng, Y., Zhang, M., Ma, H., Xu, B., Jiang, H., Wang, J., & Li, G. (2019). CD56brightCD16− natural killer cells are shifted toward an IFN-γ-promoting phenotype with reduced regulatory capacity in osteoarthritis. Human Immunology, 80(10), 871–877. https://doi.org/10.1016/j.humimm.2019.07.283
  • Wei, Y., & Bai, L. (2016). Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connective Tissue Research, 57(4), 245–261. https://doi.org/10.1080/03008207.2016.1177036
  • White, C. M., Kesler, W. W., Miner, L., & Flemming, D. (2022). MR imaging knee synovitis and synovial pathology. Magnetic Resonance Imaging Clinics of North America, 30(2), 277–291. https://doi.org/10.1016/j.mric.2021.11.007
  • Wright, H. L., Moots, R. J., Bucknall, R. C., & Edwards, S. W. (2010). Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford, England), 49(9), 1618–1631. https://doi.org/10.1093/rheumatology/keq045
  • Wu, J., He, B., Miao, M., Han, X., Dai, H., Dou, H., Li, Y., Zhang, X., & Wang, G. (2022). Nocardia rubraEnhancing natural killer cell-mediated cancer immunotherapy by the biological macromolecule cell-wall skeleton. Pathology and Oncology Research, 28, 1610555. https://doi.org/10.3389/pore.2022.1610555
  • Xia, T., Zhang, M., Lei, W., Yang, R., Fu, S., Fan, Z., Yang, Y., & Zhang, T. (2023). Advances in the role of STAT3 in macrophage polarization. Frontiers in Immunology, 14, 1160719. https://doi.org/10.3389/fimmu.2023.1160719
  • Xiong, S., Zhao, Y., & Xu, T. (2021). DNA methyltransferase 3 beta mediates the methylation of the microRNA-34a promoter and enhances chondrocyte viability in osteoarthritis. Bioengineered, 12(2), 11138–11155. https://doi.org/10.1080/21655979.2021.2005308
  • Yang, J., Fan, Y., & Liu, S. (2022). ATF3 as a potential diagnostic marker of early-stage osteoarthritis and its correlation with immune infiltration through bioinformatics analysis. Bone & Joint Research, 11(9), 679–689. https://doi.org/10.1302/2046-3758.119.BJR-2022-0075.R1
  • Yang, C. R., Shih, K. S., Liou, J. P., Wu, Y.-W., Hsieh, I.-N., Lee, H.-Y., Lin, T.-C., & Wang, J.-H. (2014). Denbinobin upregulates miR-146a expression and attenuates IL-1β-induced upregulation of ICAM-1 and VCAM-1 expressions in osteoarthritis fibroblast-like synoviocytes. Journal of Molecular Medicine (Berlin, Germany), 92(11), 1147–1158. https://doi.org/10.1007/s00109-014-1192-8
  • Yao, Q., Wu, X., Tao, C., Gong, W., Chen, M., Qu, M., Zhong, Y., He, T., Chen, S., & Xiao, G. (2023). Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 56. https://doi.org/10.1038/s41392-023-01330-w
  • Zhao, S., Grieshaber-Bouyer, R., Rao, D. A., Kolb, P., Chen, H., Andreeva, I., Tretter, T., Lorenz, H.-M., Watzl, C., Wabnitz, G., Tykocinski, L.-O., & Merkt, W. (2022). Effect of JAK inhibition on the induction of proinflammatory HLA-DR+CD90+ rheumatoid arthritis synovial fibroblasts by interferon-γ. Arthritis & Rheumatology (Hoboken, NJ), 74(3), 441–452. https://doi.org/10.1002/art.41958
  • Zhao, W., Liu, Y., Liu, K., Tu, F., Zhang, C., & Wang, H. (2021). Synovial fibroblasts regulate the cytotoxicity and osteoclastogenic activity of synovial natural killer cells through the RANKL-RANK axis in osteoarthritis. Scandinavian Journal of Immunology, 94(2), e13069. https://doi.org/10.1111/sji.13069
  • Zhao, L., Li, J., Zhou, X., Pan, Q., Zhao, W., Yang, X., & Wang, H. (2021). Natural killer cells regulate pulmonary macrophages polarization in host defense against chlamydial respiratory infection. Frontiers in Cellular and Infection Microbiology, 11, 775663. https://doi.org/10.3389/fcimb.2021.775663

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.