44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Therapeutic Potential of Neutrophil Extracellular Traps and NLRP3 Inflammasomes in Mycoplasma pneumoniae Pneumonia

, , , &

References

  • Andargie, T. E., Tsuji, N., Seifuddin, F., Jang, M. K., Yuen, P. S., Kong, H., Tunc, I., Singh, K., Charya, A., Wilkins, K., Nathan, S., Cox, A., Pirooznia, M., Star, R. A., & Agbor-Enoh, S. (2021). Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight, 6(7), e147610. https://doi.org/10.1172/jci.insight.147610
  • Aymonnier, K., Ng, J., Fredenburgh, L. E., Zambrano-Vera, K., Münzer, P., Gutch, S., Fukui, S., Desjardins, M., Subramaniam, M., Baron, R. M., Raby, B. A., Perrella, M. A., Lederer, J. A., & Wagner, D. D. (2022). Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Advances, 6(7), 2001–2013. https://doi.org/10.1182/bloodadvances.2021005949
  • Bose, S., Segovia, J. A., Somarajan, S. R., Chang, T. H., Kannan, T. R., Baseman, J. B., & Griffin, D. E. (2014). ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity. mBio, 5(6), e02186–14. https://doi.org/10.1128/mBio.02186-14
  • Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535. https://doi.org/10.1126/science.1092385
  • Cheng, A. P., Cheng, M. P., Gu, W., Sesing Lenz, J., Hsu, E., Schurr, E., Bourque, G., Bourgey, M., Ritz, J., Marty, F. M., Chiu, C. Y., Vinh, D. C., & De Vlaminck, I. (2021). Cell-free DNA tissues of origin by methylation profiling reveals significant cell, tissue, and organ-specific injury related to COVID-19 severity. Med (NY), 2(4), 411–422.e5. https://doi.org/10.1016/j.medj.2021.01.001
  • Deng, F., Cao, H., Liang, X., Li, Q., Yang, Y., Zhao, Z., Tan, J., Fu, G., & Shu, C. (2023). Analysis of cytokine levels, cytological findings, and MP-DNA level in bronchoalveolar lavage fluid of children with Mycoplasma pneumoniae pneumonia. Immunity Inflammation & Disease, 11(5), e849. https://doi.org/10.1002/iid3.849
  • Frank, M. O. (2016). Circulating cell-free DNA differentiates severity of inflammation. Biological Research for Nursing, 18(5), 477–488. https://doi.org/10.1177/1099800416642571
  • Gupta, A., Singh, K., Fatima, S., Ambreen, S., Zimmermann, S., Younis, R., Krishnan, S., Rana, R., Gadi, I., Schwab, C., Biemann, R., Shahzad, K., Rani, V., Ali, S., Mertens, P. R., Kohli, S., & Isermann, B. (2022). Neutrophil extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in diabetic kidney disease. Nutrients, 14(14), 2965. https://doi.org/10.3390/nu14142965
  • Hu, Q., Shi, H., Zeng, T., Liu, H., Su, Y., Cheng, X., Ye, J., Yin, Y., Liu, M., Zheng, H., Wu, X., Chi, H., Zhou, Z., Jia, J., Sun, Y., Teng, J., & Yang, C. (2019). Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still’s disease. Arthritis Research & Therapy, 21(1), 9. https://doi.org/10.1186/s13075-018-1800-z
  • Kannan, T. R., Coalson, J. J., Cagle, M., Musatovova, O., Hardy, R. D., & Baseman, J. B. (2011). Synthesis and distribution of CARDS toxin during Mycoplasma pneumoniae infection in a murine model. The Journal of Infectious Diseases, 204(10), 1596–1604. https://doi.org/10.1093/infdis/jir557
  • Kim, S., Hong, K. H., Gu, J. Y., In, J. W., Ahn, M. Y., & Kim, H. K. (2022). High circulating levels of neutrophil extracellular traps parameters predicting poor outcome in COVID-19. Annals of Clinical and Laboratory Science, 52(3), 374–381.
  • Lee, K. L., Lee, C. M., Yang, T. L., Yen, T. Y., Chang, L. Y., Chen, J. M., Lee, P.-I., Huang, L.-M., & Lu, C.-Y. (2021). Severe Mycoplasma pneumoniae pneumonia requiring intensive care in children, 2010–2019. Journal of the Formosan Medical Association, 120(1), 281–291. https://doi.org/10.1016/j.jfma.2020.08.018
  • Lee, K. Y., Lee, H. S., Hong, J. H., Lee, M. H., Lee, J. S., Burgner, D., & Lee, B.-C. (2006). Role of prednisolone treatment in severe Mycoplasma pneumoniae pneumonia in children. Pediatric Pulmonology, 41(3), 263–268. https://doi.org/10.1002/ppul.20374
  • Li, F., Zhang, Y., Shi, P., Cao, L., Su, L., Fu, P., Abuduxikuer, K., Wang, L., Wang, Y., Lu, R., Tan, W., & Shen, J. (2022). Mycoplasma pneumoniae and adenovirus coinfection cause pediatric severe community-acquired pneumonia. Microbiology Spectrum, 10(2), e0002622. https://doi.org/10.1128/spectrum.00026-22
  • Li, G., Fan, L., Wang, Y., Huang, L., Wang, M., Zhu, C., Hao, C., Ji, W., Liang, H., Yan, Y., & Chen, Z. (2019). High co-expression of TNF-α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia. Molecular Medicine, 25(1), 38. https://doi.org/10.1186/s10020-019-0105-2
  • Liu, J., He, R., Wu, R., Wang, B., Xu, H., Zhang, Y., Li, H., & Zhao, S. (2020). Mycoplasma pneumoniae pneumonia associated thrombosis at Beijing Children’s hospital. BMC Infectious Diseases, 20(1), 51. https://doi.org/10.1186/s12879-020-4774-9
  • Liu, T. Y., Lee, W. J., Tsai, C. M., Kuo, K. C., Lee, C. H., Hsieh, K. S., Chang, C.-H., Su, Y.-T., Niu, C.-K., & Yu, H.-R. (2018). Serum lactate dehydrogenase isoenzymes 4 plus 5 is a better biomarker than total lactate dehydrogenase for refractory Mycoplasma pneumoniae pneumonia in children. Pediatrics & Neonatology, 59(5), 501–506. https://doi.org/10.1016/j.pedneo.2017.12.008
  • Lu, A., Wang, C., Zhang, X., Wang, L., & Qian, L. (2015). Lactate dehydrogenase as a biomarker for prediction of refractory Mycoplasma pneumoniae pneumonia in children. Respiratory Care, 60(10), 1469–1475. https://doi.org/10.4187/respcare.03920
  • Luo, H., He, J., Qin, L., Chen, Y., Chen, L., Li, R., Zeng, Y., Zhu, C., You, X., & Wu, Y. (2021). Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response. Clinical and Experimental Immunology, 203(1), 66–79. https://doi.org/10.1111/cei.13510
  • Poddighe, D. (2018). Extra-pulmonary diseases related to Mycoplasma pneumoniae in children: Recent insights into the pathogenesis. Current Opinion in Rheumatology, 30(4), 380–387. https://doi.org/10.1097/BOR.0000000000000494
  • Segovia, J. A., Chang, T. H., Winter, V. T., Coalson, J. J., Cagle, M. P., Pandranki, L., Bose, S., Baseman, J. B., & Kannan, T. R. (2017). NLRP3 is a critical regulator of inflammation and innate immune cell response during Mycoplasma pneumoniae infection. Infection and Immunity, 86(1), e00548–17. https://doi.org/10.1128/IAI.00548-17
  • Subspecialty Group of Respiratory Diseases, The Society of Pediatrics, Chinese Medical Association Editorial Board, & Chinese Journal of Pediatrics. (2013). Guidelines for management of community acquired pneumonia in children (the revised edition of 2013) (I). Zhonghua Er Ke Za Zhi, 51(10), 745–752.
  • Tamiya, S., Yoshikawa, E., Ogura, M., Kuroda, E., Suzuki, K., Yoshioka, Y., & Sui, Y. (2021). Neutrophil-mediated lung injury both via TLR2-dependent production of IL-1α and IL-12 p40, and TLR2-independent CARDS toxin after Mycoplasma pneumoniae infection in mice. Microbiology Spectrum, 9(3), e0158821. https://doi.org/10.1128/spectrum.01588-21
  • Techasaensiri, C., Tagliabue, C., Cagle, M., Iranpour, P., Katz, K., Kannan, T. R., Coalson, J. J., Baseman, J. B., & Hardy, R. D. (2010). Variation in colonization, ADP-ribosylating and vacuolating cytotoxin, and pulmonary disease severity among Mycoplasma pneumoniae strains. American Journal of Respiratory and Critical Care Medicine, 182(6), 797–804. https://doi.org/10.1164/rccm.201001-0080OC
  • Twaddell, S. H., Baines, K. J., Grainge, C., & Gibson, P. G. (2019). The emerging role of neutrophil extracellular traps in respiratory disease. Chest, 156(4), 774–782. https://doi.org/10.1016/j.chest.2019.06.012
  • Waites, K. B., Xiao, L., Liu, Y., Balish, M. F., & Atkinson, T. P. (2017). Mycoplasma pneumoniae from the respiratory tract and beyond. Clinical Microbiology Reviews, 30(3), 747–809. https://doi.org/10.1128/CMR.00114-16
  • Wang, Z., Bao, H., Liu, Y., Wang, Y., Qin, J., & Yang, L. (2020). Interleukin-23 derived from CD16+ monocytes drive IL-17 secretion by TLR4 pathway in children with Mycoplasma pneumoniae pneumonia. Life Sciences, 258, 118149. https://doi.org/10.1016/j.lfs.2020.118149
  • Zhang, Z., Wan, R., Yuan, Q., Dou, H., Tu, P., Shi, D., Fu, X., & Xin, D. (2022). Cell damage and neutrophils promote the infection of Mycoplasma pneumoniae and inflammatory response. Microbial Pathogenesis, 169, 105647. https://doi.org/10.1016/j.micpath.2022.105647
  • Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J. A., Blair, C. N., Weber, A., Barnes, B. J., Egeblad, M., Woods, R. J., Kanthi, Y., & Knight, J. S. (2020). Neutrophil extracellular traps in COVID-19. JCI Insight, 5(11), e138999. https://doi.org/10.1172/jci.insight.138999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.