46
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors

&

References

  • Aira, N., Andersson, A.-M., Singh, S. K., McKay, D. M., & Blomgran, R. (2017). Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response. PLOS Neglected Tropical Diseases, 11(2), e0005390. https://doi.org/10.1371/journal.pntd.0005390
  • Almeida, P. E., Roque, N. R., Magalhães, K. G., Mattos, K. A., Teixeira, L., Maya-Monteiro, C., Almeida, C. J., Castro-Faria-Neto, H. C., Ryffel, B., Quesniaux, V. F. J., & Bozza, P. T. (2014). Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1841(1), 97–107. https://doi.org/10.1016/j.bbalip.2013.10.008
  • Amorim, C. F., Souza, A. S., Diniz, A. G., Carvalho, N. B., Santos, S. B., & Carvalho, E. M. (2014). Functional activity of monocytes and macrophages in HTLV-1 infected subjects. Neglected Tropical Diseases, 8(12), e339. https://doi.org/10.1371/journal.pntd.0003399
  • Aulik, N. A., Hellenbrand, K. M., Czuprynsk, C. J., & Urban, J. F. (2012). Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infection and Immunity, 80(5), 1923–1933. https://doi.org/10.1128/IAI.06120-11
  • Bartneck, M., Keul, H. A., Zwadlo-Klarwasser, G., & Groll, J. (2010). Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Letters, 10(1), 59–63. https://doi.org/10.1021/nl902830x
  • Bastos, M. L., Santos, S. B., Souza, A., Finkmoore, B., Bispo, O., Barreto, T., Cardoso, I., Bispo, I., Bastos, F., Pereira, D., Riley, L., & Carvalho, E. M. (2012). Influence of HTLV-1 on the clinical, microbiologic and immunologic presentation of tuberculosis. BMC Infectious Diseases, 12(1), 199. https://doi.org/10.1186/1471-2334-12-199
  • Begum, S., Quach, J., & Chadee, K. (2015). Immune evasion mechanisms of Entamoeba histolytica: Progression to disease. Frontiers in Microbiology, 6, 1394. https://doi.org/10.3389/fmicb.2015.01394
  • Bénard, A., Sakwa, I., Schierloh, P., Colom, A., Mercier, I., Tailleux, L., Jouneau, L., Boudinot, P., Al-Saati, T., Lang, R., Rehwinkel, J., Loxton, A. G., Kaufmann, S. H. E., Anton-Leberre, V., O’Garra, A., Sasiain, M. D. C., Gicquel, B., Fillatreau, S., Neyrolles, O., & Hudrisier, D. (2018). B cells producing type I IFN modulate macrophage polarization in tuberculosis. American Journal of Respiratory and Critical Care Medicine, 197(6), 801–813. https://doi.org/10.1164/rccm.201707-1475OC
  • Benoit, M., Desnues, B., & Mege, J.-L. (2008). Macrophage polarization in bacterial infections. Journal of Immunology, 181(6), 3733–3739. https://doi.org/10.4049/jimmunol.181.6.3733
  • Bielen, K., Jongers, B. S., Boddaert, J., Raju, T. K., Lammens, C., Malhotra-Kumar, S., Jorens, P. G., Goossens, H., Kumar-Singh, S. (2017). Biofilm-induced type 2 innate immunity in a cystic fibrosis model of Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7, 274. https://doi.org/10.3389/fcimb.2017.00274
  • Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology, 11(10), 889–896. https://doi.org/10.1038/ni.1937
  • Boe, D. M., Curtis, B. J., Chen, M. M., Ippolito, J. A., & Kovacs, E. J. (2015). Extracellular traps and macrophages: New roles for the versatile phagocyte. Journal of Leukocyte Biology, 97(6), 1023–1035. https://doi.org/10.1189/jlb.4RI1014-521R
  • Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12(1), 64. https://doi.org/10.1016/S0952-7915(99)00052-7
  • Brasil. (2017). Boletim Epidemiológico AIDS e DST. Brasília: Ministério da Saúde, Secretaria de Vigilância em Saúde, PN de DST e AIDS. 48(1).
  • Brasil. (2023). Ministério da Saúde. Dados sobre a Tuberculose no Brasil.
  • Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532. https://doi.org/10.1126/science.1092385
  • Brodin, P., & Davis, M. M. (2017). Human immune system variation. Nature Reviews Immunology, 17(1), 21–29. https://doi.org/10.1038/nri.2016.125
  • Brown, A. F., Leech, J. M., Rogers, T. R., & McLoughlin, R. M. (2014). Staphylococcus aureus colonization: Modulation of host immune response and impact on human vaccine design. Frontiers in Immunology, 4(507), 1–20. https://doi.org/10.3389/fimmu.2013.00507
  • Brown, J. P., Zachary, J. F., Teuscher, C., Weis, J. J., & Wooten, R. M. (1999). Dual role of interleukin-10 in murine lyme disease: Regulation of arthritis severity and host defense. Infection and Immunity, 67(10), 5142–5150. https://doi.org/10.1128/IAI.67.10.5142-5150.1999
  • Brundu, S., Palma, L., Picceri, G. G., Ligi, D., Orlandi, C., Galluzzi, L., Chiarantini, L., Casabianca, A., Schiavano, G. F., Santi, M., Mannello, F., Green, K., Smietana, M., Magnani, M., & Fraternale, A. (2016). Glutathione depletion is linked with Th2 polarization in mice with a retrovirus-induced immunodeficiency syndrome, murine AIDS: Role of proglutathione molecules as immunotherapeutics. Journal of Virology, 90(16), 7118–7130. https://doi.org/10.1128/JVI.00603-16
  • Byrd, A. S., O’Brien, X. M., Johnson, C. M., Lavigne, L. M., & Reichner, J. S. (2013). An extracellular matrix–based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. The Journal of Immunology, 190(8), 4136–4148. https://doi.org/10.4049/jimmunol.1202671
  • Cabalén, M. E., Cabral, M. F., Sanmarco, L. M., Andrada, M. C., Onofrio, L. I., Ponce, N. E., Aoki, M. P., Gea, S., & Cano, R. C. (2016). Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model. Oncotarget, 7(12), 13400–13415. https://doi.org/10.18632/oncotarget.7630
  • Carpino, G., Nobili, V., Renzi, A., De Stefanis, C., Stronati, L., Franchitto, A., Alisi, A., Onori, P., De Vito, R., Alpini, G., & Gaudio, E. (2016). Macrophage activation in pediatric nonalcoholic fatty liver disease (NAFLD) correlates with hepatic progenitor cell response via Wnt3a pathway. PLOS ONE, 11(6), e0157246. https://doi.org/10.1371/journal.pone.0157246
  • Cassol, E., Cassetta, L., Rizzi, C., Alfano, M., & Poli, G. (2009). M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. Journal of Immunology, 182(10), 6237–6246. https://doi.org/10.4049/jimmunol.0803447
  • Cerdeira, C. D. (2022). Complicações e sequelas neurológicas e psiquiátricas da COVID-19: uma revisão sistemática. VITTALLE - Revista de Ciências da Saúde, 34(3), 20–42. https://doi.org/10.14295/vittalle.v34i3.14460
  • Cerdeira, C. D., Brigagão, M. R. P. L., Carli, M. L., de Souza Ferreira, C., de Oliveira Isac Moraes, G., Hadad, H., Costa Hanemann, J. A., Hamblin, M. R., & Sperandio, F. F. (2016). Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity. Journal of Biophotonics, 9(11–12), 1180. https://doi.org/10.1002/jbio.201600035
  • Cerdeira, C. D., Chavasco, J. K., & Brigagão, M. R. P. L. (2022). Tempol decreases the levels of reactive oxygen species in human neutrophils and impairs their response to Mycobacterium tuberculosis. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1), 123–151.
  • Cerdeira, C. D., da Silva, J. J., Netto, M. F. R., Boriollo, M. F., Moraes, G. O., Santos, G. B., dos Reis, L. F., & Brigagão, M. R. (2020). Talinum paniculatum: A plant with antifungal potential mitigates fluconazole-induced oxidative damage-mediated growth inhibition of Candida albicans. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2), 401–431. https://doi.org/10.15446/rcciquifa.v49n2.89704
  • Cerdeira, C. D., da Silva, J. J., Netto, M. F. R., Boriollo, M. F. G., Santos, G. B., dos Reis, L. F. C., & Brigagão, M. R. P. L. (2020). Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere with oxacillin action. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2), 432–451. https://doi.org/10.15446/rcciquifa.v49n2.89894
  • Cerdeira, C. D., Pereira de Araújo, M., Jorge-Ferreira, C. B. R., Dias, A. L. T., & Brigagão, M. R. P. L. (2021). Explorando os estresses oxidativo e nitrosativo contra fungos: um mecanismo subjacente à ação de tradicionais antifúngicos e um potencial novo alvo terapêutico na busca por indutores oriundos de fontes naturais. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(1), 100–157. https://doi.org/10.15446/rcciquifa.v50n1.85504
  • Cesta, M. C., Zippoli, M., Marsiglia, C., Gavioli, E. M., Cremonesi, G., Khan, A., Mantelli, F., Allegretti, M., & Balk, R. (2023). Neutrophil activation and neutrophil extracellular traps (NETs) in COVID-19 ARDS and immunothrombosis. European Journal of Immunology, 53(1), e2250010. https://doi.org/10.1002/eji.202250010
  • Chan, G., Bivins-Smith, E. R., Smith, M. S., & Yurochko, A. D. (2009). NF-κB and phosphatidylinositol 3-kinase activity mediates the HCMV-induced atypical M1/M2 polarization of monocytes. Virus Research, 144(1–2), 329–333. https://doi.org/10.1016/j.virusres.2009.04.026
  • Chávez-Galán, L., Olleros, M. L., Vesin, D., & Garcia, I. (2015). Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Frontiers in Immunology, 6, 263. https://doi.org/10.3389/fimmu.2015.00263
  • Chen, S., Saeed, A. F. U. H., Liu, Q., Jiang, Q., Xu, H., Xiao, G. G., Rao, L., & Duo, Y. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy, 8(1), 207. https://doi.org/10.1038/s41392-023-01452-1
  • Chen, W. H., Toapanta, F. R., Shirey, K. A., Zhang, L., Giannelou, A., Page, C., Frieman, M. B., Vogel, S. N., & Cross, A. S. (2012). Potential role for alternatively activated macrophages in the secondary bacterial infection during recovery from influenza. Immunology letters, 141(2), 227–234. https://doi.org/10.1016/j.imlet.2011.10.009
  • Chow, O. A., Von Kockritz-Blickwede, M., Bright, A. T., Hensler, M. E., Zinkernagel, A. S., Cogen, A. L., Gallo, R. L., Monestier, M., Wang, Y., Glass, C. K., & Nizet, V. (2010). Statins enhance formation of phagocyte extracellular traps. Cell Host & Microbe, 8(5), 445. https://doi.org/10.1016/j.chom.2010.10.005
  • Chung, Y., Zhang, N., Wooten, R. M., & Stevenson, B. (2013). Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells. PLOS ONE, 8(12), e84980. https://doi.org/10.1371/journal.pone.0084980
  • Cole, J., Morris, P., Dickman, M. J., & Dockrell, D. H. (2016). The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacology & Therapeutics, 167, 85–99. https://doi.org/10.1016/j.pharmthera.2016.07.013
  • Craig, J. M., & Scott, A. L. (2017). Antecedent Nippostrongylus infection alters the lung immune response to Plasmodium berghei. Parasite Immunology, 39(8), e12441. https://doi.org/10.1111/pim.12441
  • Csillag, A., Boldogh, I., Pazmandi, K., Magyarics, Z., Gogolak, P., Sur, S., Rajnavolgyi, E., & Bacsi, A. (2010). Pollen-induced oxidative stress influences both innate and adaptive immune responses via altering dendritic cell functions. The Journal of Immunology, 184(5), 2377–2385. https://doi.org/10.4049/jimmunol.0803938
  • da Silva Amorim, A. F., Jesus Coimbra, M., Podestá, M. H. M. C., da Silva, A. O., Cerdeira, C. D., Rodrigues, A. S., Nogueira, D. A., Ferreira, E. B., Vieira, L. B., Barros, C. M. D., Pereira, L. R. L., Torres, L. H., & Reis, T. M. D. (2023). Critical factors associated with morbimortality in COVID-19 patients attended at a Brazilian public hospital: A cross-sectional study. Journal of Health Sciences, 25(2), 96–107. https://doi.org/10.17921/2447-8938.2023v25n2p96-106
  • da Silva, B. J., Barbosa, M. G. M., Andrade, P. R., Ferreira, H., Nery, J. A. D. C., Côrte-Real, S., da Silva, G. M. S., Rosa, P. S., Fabri, M., Sarno, E. N., & Pinheiro, R. O. (2017). Autophagy is an innate mechanism associated with leprosy polarization. PloS Pathogens, 13(1), e1006103. https://doi.org/10.1371/journal.ppat.1006103
  • da Silva, J. J., Cerdeira, C. D., Chavasco, J. M., Cintra, A. B. P., Silva, C. B. P. D., Mendonça, A. N. D., Ishikawa, T., Boriollo, M. F. G., & Chavasco, J. K. (2014). In vitro screening antibacterial activity of Bidens pilosa Linné and Annona crassiflora Mart. against oxacillin resistant Staphylococcus aureus (ORSA) from the aerial environment at the dental clinic. Revista do Instituto de Medicina Tropical de São Paulo, 56(4), 333–340. https://doi.org/10.1590/S0036-46652014000400011
  • da Silva, T. A., Roque-Barreira, M. C., Casadevall, A., & Almeida, F. (2016). Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Scientific Reports, 6(1), 35867. https://doi.org/10.1038/srep35867
  • da Silva, T. P., Bittencourt, T. L., de Oliveira, A. L., Prata, R. B. D. S., Menezes, V., Ferreira, H., Nery, J. A. D. C., de Oliveira, E. B., Sperandio da Silva, G. M., Sarno, E. N., & Pinheiro, R. O. (2020). Macrophage polarization in leprosy–HIV Co-infected patients. Frontiers in Immunology, 11, 1493. https://doi.org/10.3389/fimmu.2020.01493
  • Das, A., Sinha, M., Datta, S., Abas, M., Chaffee, S., Sen, C. K., & Roy, S. (2015). Monocyte and macrophage plasticity in tissue repair and regeneration. The American Journal of Pathology, 185(10), 2596–2606. https://doi.org/10.1016/j.ajpath.2015.06.001
  • Davis, M. J., Tsang, T. M., Qiu, Y., Dayrit, J. K., Freij, J. B., Huffnagle, G. B., & Olszewski, M. A. (2013). Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio, 4(3), e00264–13. https://doi.org/10.1128/mBio.00264-13
  • de Castro, M. S., Miyazawa, M., Nogueira, E. S. C., Chavasco, J. K., Brancaglion, G. A., & Cerdeira, C. D., Nogueira, D. A., Ionta, M., Hanemann, J. A., Brigagão, M. R., Sperandio, F. F. (2022). Photobiomodulation enhances the Th1 immune response of human monocytes. Lasers in Medical Science, 37(1), 135–148. https://doi.org/10.1007/s10103-020-03179-9
  • de Matos, B. T. L., Buchaim, D. V., Pomini, K. T., Barbalho, S. M., Guiguer, E. L., Reis, C. H. B., Bueno, C. R. D. S., Cunha, M. R. D., Pereira, E. D. S. B. M., & Buchaim, R. L. (2021). Photobiomodulation therapy as a possible new approach in COVID-19: A systematic review. Life (Basel), 11(6), 580. https://doi.org/10.3390/life11060580
  • de Oliveira-Junior, E. B., Bustamante, J., Newburger, P. E., & Condino‐Neto, A. (2011). The human NADPH oxidase: Primary and secondary defects impairing the respiratory burst function and the microbicidal ability of phagocytes. Scandinavian Journal of Immunology, 73(5), 420–427. https://doi.org/10.1111/j.1365-3083.2010.02501.x
  • Desnues, B., Lepidi, H., Raoult, D. J., & Mege, L. (2005). Whipple disease: Intestinal infiltrating cells exhibit a transcriptional pattern of M2/alternatively activated macrophages. The Journal of Infectious Diseases, 192(9), 1642–1646. https://doi.org/10.1086/491745
  • Desnues, B., Raoult, D. J., & Mege, L. (2005). IL-16 is critical for Tropheryma whipplei replication in Whipple’s disease. Journal of Immunology, 175(7), 4575–4582. https://doi.org/10.4049/jimmunol.175.7.4575
  • Dolgachev, V. A., Yu, B., Sun, L., Shanley, T. P., Raghavendran, K., & Hemmila, M. R. (2014). IL-10 overexpression alters survival in the setting of gram negative pneumonia following lung contusion. Shock, 41(4), 301–310. https://doi.org/10.1097/SHK.0000000000000123
  • dos Reis, L. F. C., Cerdeira, C. D., Gagliano, G. S., de Figueiredo, A. B. T., Ferreira, J. H., Castro, A. P., Souza, R. L. M., & Marques, M. J. (2022). Alternate-day fasting, a high-sucrose/caloric diet and praziquantel treatment influence biochemical and behavioral parameters during Schistosoma mansoni infection in male BALB/c mice. Experimental Parasitology, 240, 108316. https://doi.org/10.1016/j.exppara.2022.108316
  • Doster, R., Rogers, L., Aronoff, D., & Gaddy, J. (2015). Macrophages produce extracellular traps in response to Streptococcus agalactiae infection. Open Forum Infectious Diseases, 2(Suppl 1), S235. https://doi.org/10.1093/ofid/ofv133.584
  • Eastman, A. J., He, X., Qiu, Y., Davis, M. J., Vedula, P., Lyons, D. M., Park, Y.-D., Hardison, S. E., Malachowski, A. N., Osterholzer, J. J., Wormley, F. L., Williamson, P. R., & Olszewski, M. A. (2015). Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization. The Journal of Immunology, 194(12), 5999–6010. https://doi.org/10.4049/jimmunol.1402719
  • Eisele, N. A., Ruby, T., Jacobson, A., Manzanillo, P., Cox, J., Lam, L., Mukundan, L., Chawla, A., & Monack, D. (2013). Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host & Microbe, 14(2), 171–182. https://doi.org/10.1016/j.chom.2013.07.010
  • Fallows, D., Peixoto, B., Kaplan, G., & Manca, C. (2016). Mycobacterium leprae alters classical activation of human monocytes in vitro. Journal of Inflammation, 13(1), 8. https://doi.org/10.1186/s12950-016-0117-4
  • Faria, C. P., Neves, B. M., Lourenço, A., Cruz, M. T., Martins, J. D., Silva, A., Pereira, S., & Sousa, M. D. C. (2020). Giardia lamblia decreases NF-κB p65RelA protein levels and modulates LPS-induced pro-inflammatory response in macrophages. Scientific RepoRtS, 10(1), 6234. https://doi.org/10.1038/s41598-020-63231-0
  • Flannagan, R. S., Heit, B., & Heinrichs, D. E. (2015). Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens, 4(4), 826–868. https://doi.org/10.3390/pathogens4040826
  • Forrellad, M. A., Klepp, L. I., Gioffré, A., Sabio y García, J., Morbidoni, H. R., Santangelo, M. D. L. P., Cataldi, A. A., & Bigi, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4(1), 3–66. https://doi.org/10.4161/viru.22329
  • Fournier, F., & Philpott, D. J. (2005). Recognition of Staphylococcus aureus by the innate immune system. Clinical Microbiology Reviews, 18(3), 521. https://doi.org/10.1128/CMR.18.3.521-540.2005
  • Franchi, L., Munoz-Planillo, R., & Nunez, G. (2012). Sensing and reacting to microbes through the inflammasomes. Nature Immunology, 13(4), 325–332. https://doi.org/10.1038/ni.2231
  • Freitas, M. S., Oliveira, A. F., da Silva, T. A., Fernandes, F. F., Gonçales, R. A., Almeida, F., & Roque-Barreira, M. C. (2016). Paracoccin induces M1 polarization of macrophages via interaction with TLR4. Frontiers in Microbiology, 7(1003), 1–9. https://doi.org/10.3389/fmicb.2016.01003
  • Funes, S. C., Rios, M., Escobar-Vera, J., & Kalergis, A. M. (2018). Implications of macrophage polarization in autoimmunity. Immunology, 154(2), 186–195. https://doi.org/10.1111/imm.12910
  • Galván-Peña, S., & O’Neill, L. A. J. (2014). Metabolic reprograming in macrophage polarization. Frontiers in Immunology, 5(420), 6. https://doi.org/10.3389/fimmu.2014.00420
  • Galvão-Lima, L. J., Espíndola, M. S., Soares, L. S., Zambuzi, F. A., Cacemiro, M., Fontanari, C., Bollela, V. R., & Frantz, F. G. (2017). Classical and alternative macrophages have impaired function during acute and chronic HIV-1 infection. The Brazilian Journal of Infectious Diseases, 21(1), 42–50. https://doi.org/10.1016/j.bjid.2016.10.004
  • Ganguly, N., Giang, P. H., Gupta, C., Basu, C. K., Siddiqui, I., Salunke, D. M., & Sharma, P. (2008). Mycobacterium tuberculosis secretory proteins CFP-10, ESAT-6 and the CFP10: ESAT6 complex inhibit lipopolysaccharide-induced NF-κB transactivation by downregulation of reactive oxidative species (ROS) production. Immunology and Cell Biology, 86(1), 98–106. https://doi.org/10.1038/sj.icb.7100117
  • Gerngross, L., Lehmicke, G., Belkadi, A., & Fischer, T. (2015). Role for cFMS in maintaining alternative macrophage polarization in SIV infection: Implications for HIV neuropathogenesis. Journal of Neuroinflammation, 12(1), 58. https://doi.org/10.1186/s12974-015-0272-1
  • Gobert, A. P., Verriere, T., Asim, M., Barry, D. P., Piazuelo, M. B., de Sablet, T., Delgado, A. G., Bravo, L. E., Correa, P., Peek, R. M., Chaturvedi, R., & Wilson, K. T. (2014). Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. The Journal of Immunology, 193(6), 3013–3022. https://doi.org/10.4049/jimmunol.1401075
  • Goldmann, O., & Medina, E. (2013). The expanding world of extracellular traps: Not only neutrophils but much more. Frontiers in Immunology, 3(12), 1. https://doi.org/10.3389/fimmu.2012.00420
  • Gomes, M. S., Boelaert, J. R., & Appelberg, R. (2001). Role of iron in experimental Mycobacterium avium infection. Journal of Clinical Virology, 20(3), 117–122. https://doi.org/10.1016/S1386-6532(00)00135-9
  • Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32(5), 593–604. https://doi.org/10.1016/j.immuni.2010.05.007
  • Guimarães-Costa, A. B., Rochael, N. C., Oliveira, F., Echevarria-Lima, J., & Saraiva, E. M. (2017). Neutrophil extracellular traps reprogram IL-4/GM-CSF-induced monocyte differentiation to anti-inflammatory macrophages. Frontiers in Immunology, 8(523), 12. https://doi.org/10.3389/fimmu.2017.00523
  • Guirelli, P. M., Angeloni, M. B., Barbosa, B. F., Gomes, A. O., Castro, A. S., Franco, P. S., Silva, R. J., Oliveira, J. G., Martins-Filho, O. A., Mineo, J. R., Ietta, F., & Ferro, E. A. (2015). Trophoblast-macrophage crosstalk on human extravillous under Toxoplasma gondii infection. Placenta, 36(10), 1106–1114. https://doi.org/10.1016/j.placenta.2015.08.009
  • Hanke, M. L., Angle, A., Kielian, T., & Chakravortty, D. (2012). MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLOS ONE, 7(8), e42476. https://doi.org/10.1371/journal.pone.0042476
  • Hazlett, L. D., McClellan, S. A., Barrett, R. P., Huang, X., Zhang, Y., Wu, M., van Rooijen, N., & Szliter, E. (2010). IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis. Investigative Ophthalmology & Visual Science, 51(3), 1524–1532. https://doi.org/10.1167/iovs.09-3983
  • Heppner, F. L., Ransohoff, R. M., & Becher, B. (2016). Immune attack: The role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 16(6), 358–372. https://doi.org/10.1038/nrn3880
  • Huang, C. B., Alimova, Y., Ebersole, J. L., & Marconi, R. (2016). Macrophage polarization in response to oral commensals and pathogens. Pathogens and Disease, 74(3), ftw011. https://doi.org/10.1093/femspd/ftw011
  • Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Frontiers in Immunology, 5(514), 22. https://doi.org/10.3389/fimmu.2014.00514
  • Jaume, M., Yip, M. S., Cheung, C. Y., Leung, H. L., Li, P. H., Kien, F., Dutry, I., Callendret, B., Escriou, N., Altmeyer, R., Nal, B., Daëron, M., Bruzzone, R., & Peiris, J. S. M. (2011). Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. Journal of Virology, 85(20), 10582–10597. https://doi.org/10.1128/JVI.00671-11
  • Je, S., Quan, H., Yoon, Y., Na, Y., Kim, B.-J., & Seok, S. H. (2016). Mycobacterium massiliense induces macrophage extracellular traps with facilitating bacterial growth. PLOS ONE, 11(5), e0155685. https://doi.org/10.1371/journal.pone.0155685
  • Jiao, S., Li, C., Guo, F., Zhang, J., Zhang, H., Cao, Z., Wang, W., Bu, W., Lin, M., Lü, J., & Zhou, Z. (2023). SUN1/2 controls macrophage polarization via modulating nuclear size and stiffness. Nature Communications, 14(1), 6416. https://doi.org/10.1038/s41467-023-42187-5
  • Juhas, U., Ryba-Stanisławowska, M., Szargiej, P., & Myśliwska, J. (2015). Different pathways of macrophage activation and polarization. Postępy Higieny i Medycyny Doświadczalnej, 69, 496–502. https://doi.org/10.5604/17322693.1150133
  • Jupelli, M., Shimada, K., Chiba, N., Slepenkin, A., Alsabeh, R., Jones, H. D., Peterson, E., Chen, S., Arditi, M., & Crother, T. R. (2013). Chlamydia pneumoniae infection in mice induces chronic lung inflammation, iBALT formation, and fibrosis. PLOS ONE, 8(10), e77447. https://doi.org/10.1371/journal.pone.0077447
  • Ka, M. B., Daumas, A., Textoris, J., & Mege, J. L. (2014). Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases. Frontiers in Immunology, 5, 500. https://doi.org/10.3389/fimmu.2014.00500
  • Kahnert, A., Seiler, P., Stein, M., Bandermann, S., Hahnke, K., Mollenkopf, H., & Kaufmann, S. (2006). Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. European Journal of Immunology, 36(3), 631–647. https://doi.org/10.1002/eji.200535496
  • Kajahn, J., Franz, S., Rueckert, E., Forstreuter, I., Hintze, V., Moeller, S., & Simon, J. C. (2012). Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter, 2(4), 226–273. https://doi.org/10.4161/biom.22855
  • Kalish, S. V., Lyamina, S. V., Usanova, E. A., Manukhina, E. B., Larionov, N. P., & Malyshev, I. Y. (2015). Macrophages reprogrammed in vitro towards the M1 phenotype and activated with LPS extend lifespan of mice with ehrlich ascites carcinoma. Medical Science Monitor Basic Research, 21, 226–234. https://doi.org/10.12659/MSMBR.895563
  • Kasraie, S., Niebuhr, M., Kopfnagel, V., Dittrich‐Breiholz, O., Kracht, M., & Werfel, T. (2012). Macrophages from patients with atopic dermatitis show a reduced CXCL10 expression in response to staphylococcal α-toxin. Allergy, 67(1), 41–49. https://doi.org/10.1111/j.1398-9995.2011.02710.x
  • Khan, J., Sharma, P. K., & Mukhopadhaya, A. (2015). Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology, 220(11), 1199–1209. https://doi.org/10.1016/j.imbio.2015.06.009
  • Koncz, G., Jenei, V., Tóth, M., Váradi, E., Kardos, B., Bácsi, A., & Mázló, A. (2023). Damage-mediated macrophage polarization in sterile inflammation. Frontiers in Immunology, 14, 1169560. https://doi.org/10.3389/fimmu.2023.1169560
  • Kong, F., Saldarriaga, O. A., Spratt, H., Osorio, E. Y., Travi, B. L., Luxon, B. A., & Melby, P. C. (2017). Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype. PLOS Pathogens, 13(1), e1006165. https://doi.org/10.1371/journal.ppat.1006165
  • Kong, L., Zhang, Q., Chao, J., Wen, H., Zhang, Y., Chen, H., Pappoe, F., Zhang, A., Xu, X., Cai, Y., Li, M., Luo, Q., Zhang, L., & Shen, J. (2015). Polarization of macrophages induced by Toxoplasma gondii and its impact on abnormal pregnancy in rats. Acta tropica, 143, 1–7. https://doi.org/10.1016/j.actatropica.2014.12.001
  • Krysko, O., Holtappels, G., Zhang, N., Kubica, M., Deswarte, K., Derycke, L., Claeys, S., Hammad, H., Brusselle, G. G., Vandenabeele, P., Krysko, D. V., & Bachert, C. (2011). Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy, 66(3), 396–403. https://doi.org/10.1111/j.1398-9995.2010.02498.x
  • Labonte, A. C., Tosello-Trampont, A.-C., & Hahn, Y. S. (2014). The role of macrophage polarization in infectious and inflammatory diseases. Molecules and Cells, 37(4), 275–285. https://doi.org/10.14348/molcells.2014.2374
  • Lai, X.-H., Xu, Y., Chen, X.-M., & Ren, Y. (2015). Macrophage cell death upon intracellular bacterial infection. Macrophage (Houst), 26, e779. https://doi.org/10.14800/Macrophage.779
  • Lasky, E. C., Olson, R. M., Brown, C. R., & Bäumler, A. J. (2015). Macrophage polarization during murine Lyme borreliosis. Infection and Immunity, 83(7), 2627–2635. https://doi.org/10.1128/IAI.00369-15
  • Lee, M.-S., Tseng, Y.-H., Chen, Y.-C., Kuo, C.-H., Wang, S.-L., Lin, M.-H., Huang, Y.-F., Wang, Y.-W., Lin, Y.-C., & Hung, C.-H. (2018). M2 macrophage subset decrement is an indicator of bleeding tendency in pediatric dengue disease. Journal of Microbiology, Immunology and Infection, 51(6), 829–838. https://doi.org/10.1016/j.jmii.2018.08.006
  • Lefèvre, L., Authier, H., Stein, S., Majorel, C., Couderc, B., Dardenne, C., Eddine, M. A., Meunier, E., Bernad, J., Valentin, A., Pipy, B., Schoonjans, K., & Coste, A. (2015). LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis. Nature Communications, 6(1), 6801. https://doi.org/10.1038/ncomms7801
  • León, B., & Ardavín, C. (2008). Monocyte-derived dendritic cells in innate and adaptive immunity. Immunology and Cell Biology, 86(4), 320. https://doi.org/10.1038/icb.2008.14
  • Li, W., Katz, B. P., & Spinola, S. M. (2012). Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages. Infection and Immunity, 80(12), 4426–4434. https://doi.org/10.1128/IAI.00912-12
  • Li, X., Feng, M., Zhao, Y., Zhang, Y., Zhou, R., Zhou, H., Pang, Z., Tachibana, H., & Cheng, X. (2021). A novel TLR4-binding domain of peroxiredoxin from Entamoeba histolytica triggers NLRP3 inflammasome activation in macrophages. Frontiers in Immunology, 12, 758451. https://doi.org/10.3389/fimmu.2021.758451
  • Lian, Q., Zhang, K., Zhang, Z., Duan, F., Guo, L., Luo, W., Mok, B. W. Y., Thakur, A., Ke, X., Motallebnejad, P., Nicolaescu, V., Chen, J., Ma, C. Y., Zhou, X., Han, S., Han, T., Zhang, W., Tan, A. Y., … Chen, Y. (2022). Differential effects of macrophages subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model. Nature Communications, 13(1), 2028. https://doi.org/10.1038/s41467-022-29731-5
  • Liu, P., Lin, Y.-W., Burton, F. H., & Wei, L.-N. (2015). M1-M2 balancing act in white adipose tissue browning – A new role for RIP140. Adipocyte, 4(2), 146–148. https://doi.org/10.4161/21623945.2014.981428
  • Liu, P., Wu, X., Liao, C., Liu, X., Du, J., Shi, H., Wang, X., Bai, X., Peng, P., Yu, L., Wang, F., Zhao, Y., & Liu, M. (2014). Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLOS ONE, 9(2), e90042. https://doi.org/10.1371/journal.pone.0090042
  • Liu, Y.-C., Zou, X.-B., Chai, Y.-F., & Yao, Y.-M. (2014). Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences, 10(5), 520–529. https://doi.org/10.7150/ijbs.8879
  • Lugo-Villarino, G., Vérollet, C., Maridonneau-Parini, I., & Neyrolles, O. (2011). Macrophage polarization: Convergence point targeted by Mycobacterium tuberculosis and HIV. Frontiers in Immunology, 2, 10. https://doi.org/10.3389/fimmu.2011.00043
  • Lyamina, S. V., Kruglov, S. V., Vedenikin, T. Y., Borodovitsyna, O. A., Suvorova, I. A., Shimshelashvili, S. L., & Malyshev, I. Y. (2012). Alternative reprogramming of M1/M2 phenotype of mouse peritoneal macrophages in vitro with interferon-γ and interleukin-4. Bulletin of Experimental Biology and Medicine, 152(4), 548–551. https://doi.org/10.1007/s10517-012-1572-4
  • Maloney, J., Keselman, A., Li, E., & Singer, S. M. (2015). Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection. Microbes and Infection, 17(6), 462–467. https://doi.org/10.1016/j.micinf.2015.03.006
  • Mares, C. A., Sharma, J., Li, Q., Rangel, E. L., Morris, E. G., Enriquez, M. I., & Teale, J. M. (2011). Defect in efferocytosis leads to alternative activation of macrophages in Francisella infections. Immunology and Cell Biology, 89(2), 167–172. https://doi.org/10.1038/icb.2010.81
  • Marinho, J., Galvão-Castro, B., Rodrigues, L. C., & Barreto, M. L. (2005). Increased risk of tuberculosis with human T lymphotropic virus I infection: A case-control study. JAIDS Journal of Acquired Immune Deficiency Syndromes, 40(5), 625–628. https://doi.org/10.1097/01.qai.0000174252.73516.7a
  • Martinez, F. O., Fernando, O., Siamon, G., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte- to-macrophage differentiation and polarization: New molecules and patterns of gene expression. Journal of Immunology, 177(10), 7303–7311. https://doi.org/10.4049/jimmunol.177.10.7303
  • Martinez, F. O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000prime Reports, 6, 13. https://doi.org/10.12703/P6-13
  • McCartney­Francis, N., Jin, W., Belkaid, Y., McGrady, G., & Wahl, S. M. (2014). Aberrant host defense against Leishmania major in the absence of SLPI. Journal of Leukocyte Biology, 96(5), 917–929. https://doi.org/10.1189/jlb.4A0612-295RR
  • Mège, J.-L., Mehraj, V., & Capo, C. (2011). Macrophage polarization and bacterial infections. Current Opinion in Infectious Diseases, 24(3), 230–234. https://doi.org/10.1097/QCO.0b013e328344b73e
  • Mehraj, V., Textoris, J., Amara, A. B., Ghigo, E., Raoult, D., Capo, C., & Mege, J.-L. (2013). Monocyte responses in the context of Q fever: From a static polarized model to a kinetic model of activation. The Journal of Infectious Diseases, 208(6), 942–951. https://doi.org/10.1093/infdis/jit266
  • Mills, C. D., Kincaid, K., Alt, J. M., & Hill, A. (2000). M­1/M­2 macrophages and theTh1/th2 paradigm. The Journal of Immunology, 164(12), 6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166
  • Mills, E. L., & O’Neill, L. A. (2016). Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. European Journal of Immunology, 46(1), 13–21. https://doi.org/10.1002/eji.201445427
  • Mohammadi, A., Sharifi, A., Pourpaknia, R., Mohammadian, S., & Sahebkar, A. (2018). Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Critical Reviews in Oncology/hematology, 128, 1–18. https://doi.org/10.1016/j.critrevonc.2018.05.009
  • Montenegro-Burke, J. F., Sutton, J. A., Rogers, L. M., Milne, G. L., McLean, J. A., & Aronoff, D. M. (2016). Lipid profiling of polarized human monocyte-derived macrophages. Prostaglandins & Other Lipid Mediators, 127, 1–8. https://doi.org/10.1016/j.prostaglandins.2016.11.002
  • Morris, G. A. (2007). Arginine metabolism: Boundaries of our knowledge. The Journal of Nutrition, 137(6), 1602S–1609S. https://doi.org/10.1093/jn/137.6.1602S
  • Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., & Coffman, R. L. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. Journal of Immunology, 136(7), 2348–2357. https://doi.org/10.4049/jimmunol.136.7.2348
  • Muraille, E., Leo, O., & Moser, M. (2014). Th1/Th2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism?. Frontiers in Immunology, 5(603), 12. https://doi.org/10.3389/fimmu.2014.00603
  • Nahrendorf, M., & Swirski, F. K. (2016). Abandoning M1/M2 for a network model of macrophage function. Circulation Research, 119(3), 414–417. https://doi.org/10.1161/CIRCRESAHA.116.309194
  • Nandakumar, V., Hebrink, D., Jenson, P., Kottom, T., & Limper, A. H. (2017). Differential macrophage polarization from Pneumocystis in immunocompetent and immunosuppressed hosts: Potential adjunctive therapy during pneumonia. Infection and Immunity, 85(3), e00939–16. https://doi.org/10.1128/IAI.00939-16
  • Nathan, C. F. (2008). Metchnikoff’s legacy in 2008. Nature Immunology, 9(7), 695–698. https://doi.org/10.1038/ni0708-695
  • Neil, S., Huh, J., Baronas, V., Li, X., McFarland, H. F., Cherukuri, M., Mitchell, J. B., & Quandt, J. A. (2017). Oral administration of the nitroxide radical TEMPOL exhibits immunomodulatory and therapeutic properties in multiple sclerosis models. Brain, Behavior, and Immunity, 62, 332–343. https://doi.org/10.1016/j.bbi.2017.02.018
  • Nogueira, C. F., & Cerdeira, C. D. (2015). Eventos tromboembólicos associados à cardiopatia chagásica: revisão de literature. Revista da Universidade Vale do Rio Verde, Três Corações, 13, 619–629. https://doi.org/10.5892/ruvrd.v13i1.2318
  • Nogueira, C. F., Cerdeira, C. D., Prado, A. C., Dias, R. P. C. S., Silva, R. B. V., Vertêlo, P. C., & Silvério, A. C. P. (2020). Profile of people living with HIV at a reference center in contagious and infectious diseases in Belo Horizonte (MG, Brazil). Revista de Medicina e Saúde de Brasília, 9(1), 76–89.
  • Ogle, M. E., Segar, C. E., Sridhar, S., & Botchwey, E. A. (2016). Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Experimental Biology and Medicine, 241(10), 1084–1097. https://doi.org/10.1177/1535370216650293
  • Ogston, A. (1881). Report upon micro-organisms in surgical diseases. British Medical Journal, 1, 369. https://doi.org/10.1136/bmj.1.1054.369
  • Ortiz, M. C., Lefimil, C., Rodas, P. I., Vernal, R., Lopez, M., Acuña-Castillo, C., Imarai, M., & Escobar, A. (2015). Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLOS ONE, 10(6), e0130713. https://doi.org/10.1371/journal.pone.0130713
  • Paciello, I., Silipo, A., Lembo-Fazio, L., Curcurù, L., Zumsteg, A., Noël, G., Ciancarella, V., Sturiale, L., Molinaro, A., & Bernardini, M. L. (2013). Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 110(46), E4345–4354. https://doi.org/10.1073/pnas.1303641110
  • Papadopoulos, G., Shaik-Dasthagirisaheb, Y. B., Huang, N., Viglianti, G. A., Henderson, A. J., Kantarci, A., & Gibson, F. C. (2017). Immunologic environment influences macrophage response to Porphyromonas gingivalis. Molecular Oral Microbiology, 32(3), 250–261. https://doi.org/10.1111/omi.12168
  • Pedral-Sampaio, D. B., Martins Netto, E., Pedrosa, C., Brites, C., Duarte, M., & Harrington, W. (1997). Co-infection of tuberculosis and HIV/HTLV retroviruses: Frequency and prognosis among patients admitted in a Brazilian hospital. The Brazilian Journal of Infectious Diseases, 1(1), 31–35.
  • Peon, A. N., Espinoza-Jimenez, A., & Terrazas, L. I. (2013). Immunoregulation by Taenia crassiceps and its antigens. BioMed Research International, 2013, 1–13. https://doi.org/10.1155/2013/498583
  • Pizzolla, A., Hultqvist, M., Nilson, B., Grimm, M. J., Eneljung, T., Jonsson, I.-M., Verdrengh, M., Kelkka, T., Gjertsson, I., Segal, B. H., & Holmdahl, R. (2012). Reactive oxygen species produced by the NOX2 complex in monocytes protect mice from bacterial infections. The Journal of Immunology, 188(10), 5003–5011. https://doi.org/10.4049/jimmunol.1103430
  • Ponce, N. E., Sanmarco, L. M., Eberhardt, N., García, M. C., Rivarola, H. W., Cano, R. C., & Aoki, M. P. (2016). CD73 inhibition shifts cardiac macrophage polarization toward a microbicidal phenotype and ameliorates the outcome of experimental Chagas cardiomyopathy. The Journal of Immunology, 197(3), 814–823. https://doi.org/10.4049/jimmunol.1600371
  • Porto, A. F., Neva, F. A., Bittencourt, H., Lisboa, W., Thompson, R., Alcântara, L., & Carvalho, E. M. (2001). HTLV-1 decreases Th2 type of immune response in patients with strongyloidiasis. Parasite Immunology, 23(9), 503–507. https://doi.org/10.1046/j.1365-3024.2001.00407.x
  • Porto, A. F., Santos, S. B., Alcantara, L., Guerreiro, J. B., Passos, J., Gonzalez, T., Neva, F., Gonzalez, D., Ho, J. L., & Carvalho, E. M. (2004). HTLV-1 modifies the clinical and immunological response to schistosomiasis. Clinical and Experimental Immunology, 137(2), 424–429. https://doi.org/10.1111/j.1365-2249.2004.02508.x
  • Prabhakara, R., Harro, J. M., Leid, J. G., Keegan, A. D., Prior, M. L., & Shirtliff, M. E. (2011). Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infection and Immunity, 79(12), 5010–5018. https://doi.org/10.1128/IAI.05571-11
  • Proctor, P. (2020). Tempol treatment of COVID-19. Free Rad Biol Med, 159, S95. https://doi.org/10.1016/j.freeradbiomed.2020.10.245
  • Quiding-Järbrink, M., Raghavan, S., Sundquist, M., & Ahmed, N. (2010). Enhanced M1 macrophage polarization in human Helicobacter pylori-associated atrophic gastritis and in vaccinated mice. PLOS ONE, 5(11), e15018. https://doi.org/10.1371/journal.pone.0015018
  • Radolf, J. D., Arndt, L. L., Akins, D. R., Curetty, L. L., Levi, M. E., Shen, Y., Davis, L. S., & Norgard, M. V. (1995). Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytes/macrophages. The Journal of Immunology, 154(6), 2866–2877. https://doi.org/10.4049/jimmunol.154.6.2866
  • Rajaram, M. V., Brooks, M. N., Morris, J. D., Torrelles, J. B., Azad, A. K., & Schlesinger, L. S. (2010). Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor γ linking mannose receptor recognition to regulation of immune responses. The Journal of Immunology, 185(2), 929–942. https://doi.org/10.4049/jimmunol.1000866
  • Rani, R., Jordan, M. B., Divanovic, S., & Herbert, D. R. (2012). IFN-γ–Driven IDO production from macrophages protects IL-4Rα–deficient mice against lethality during Schistosoma mansoni infection. The American Journal of Pathology, 180(5), 2001–2008. https://doi.org/10.1016/j.ajpath.2012.01.013
  • Ransohoff, R. M. (2016). A polarizing question: Do M1 and M2 microglia exist? Nature Neuroscience, 19(8), 987–991. https://doi.org/10.1038/nn.4338
  • Reales-Calderón, J. A., Aguilera-Montilla, N., Corbí, Á. L., Molero, G., & Gil, C. (2014). Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics, 14(12), 1503–1518. https://doi.org/10.1002/pmic.201300508
  • Reid, T. R., Abrouk, N., Caroen, S., Oronsky, B., Stirn, M., Larson, C., Beale, K., Knox, S. J., & Fisher, G. (2022). ROCKET: Phase II randomized, active-controlled, multicenter trial to assess the safety and efficacy of RRx-001 + irinotecan vs. Single-agent regorafenib in third/fourth line colorectal cancer. Clinical Colorectal Cancer, 22(1), 92–99. https://doi.org/10.1016/j.clcc.2022.11.003
  • Richardson, E. T., Shukla, S., Sweet, D. R., Wearsch, P. A., Tsichlis, P. N., Boom, W. H., & Harding, C. V. (2015). Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infection and Immunity, 83(6), 2242–2254. https://doi.org/10.1128/IAI.00135-15
  • Richardson, J. P., & Moyes, D. L. (2015). Adaptive immune responses to Candida albicans infection. Virulence, 6(4), 327–337. https://doi.org/10.1080/21505594.2015.1004977
  • Rodríguez-Espinosa, O., Rojas-Espinosa, O., Moreno-Altamirano, M. M., López‐Villegas, E. O., & Sánchez‐García, F. J. (2015). Metabolic requirements for neutrophil extracellular traps formation. Immunology, 145(2), 213. https://doi.org/10.1111/imm.12437
  • Rogers, K. J., Brunton, B., Mallinger, L., Bohan, D., Sevcik, K. M., Chen, J., Ruggio, N., & Maury, W. (2019). IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLOS Neglected Tropical Diseases, 13(12), e0007819. https://doi.org/10.1371/journal.pntd.0007819
  • Rogers, K. J., & Maury, W. (2018). The role of mononuclear phagocytes in Ebola virus infection. Journal of Leukocyte Biology, 104(4), 717–727. https://doi.org/10.1002/JLB.4RI0518-183R
  • Röhm, M., Grimm, M. J., D’Auria, A. C., Almyroudis, N. G., Segal, B. H., & Urban, C. F. (2014). NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infection and Immunity, 82(5), 1766–1777. https://doi.org/10.1128/IAI.00096-14
  • Roos, D. (2016). Chronic granulomatous disease. British Medical Bulletin, 118(1), 50–63. https://doi.org/10.1093/bmb/ldw009
  • Rottenberg, M. E., Gigliotti-Rothfuchs, A., & Wigzell, H. (2002). The role of IFN-γ in the outcome of chlamydial infection. Current Opinion in Immunology, 14(4), 444–451. https://doi.org/10.1016/S0952-7915(02)00361-8
  • Roy, S., Guler, R., Parihar, S. P., Schmeier, S., Kaczkowski, B., Nishimura, H., Shin, J. W., Negishi, Y., Ozturk, M., Hurdayal, R., Kubosaki, A., Kimura, Y., de Hoon, M. J. L., Hayashizaki, Y., Brombacher, F., & Suzuki, H. (2015). Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection. The Journal of Immunology, 194(12), 6035–6044. https://doi.org/10.4049/jimmunol.1402521
  • Sagiv, J. Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R., Ariel, A., Hovav, A.-H., Henke, E., Fridlender, Z., & Granot, Z. (2015). Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports, 10(4), 562–573. https://doi.org/10.1016/j.celrep.2014.12.039
  • Sang, Y., Miller, L. C., & Blecha, F. (2015). Macrophage polarization in virus-host interactions. Journal of Clinical & Cellular Immunology, 6(2). https://doi.org/10.4172/2155-9899.1000311
  • Schreiber, T., Ehlers, S., Heitmann, L., Rausch, A., Mages, J., Murray, P. J., Lang, R., & Holscher, C. (2009). Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. The Journal of Immunology, 183(2), 1301–1312. https://doi.org/10.4049/jimmunol.0803567
  • Seiler, K. P., Vavrin, Z., Eichwald, E., Hibbs, J. B., & Weis, J. J. (1995). Nitric oxide production during murine Lyme disease: Lack of involvement in host resistance or pathology. Infection and Immunity, 63(10), 3886–3895. https://doi.org/10.1128/iai.63.10.3886-3895.1995
  • Shaughnessy, L. M., & Swanson, J. A. (2007). The role of the activated macrophage in clearing Listeria monocytogenes infection. Frontiers in bioscience : A journal and virtual library, 12(1), 2683–2692. https://doi.org/10.2741/2364
  • Shen, P., Li, Q., Ma, J., Tian, M., Hong, F., Zhai, X., Li, J., Huang, H., & Shi, C. (2017). IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis. BMC Microbiology, 17(1), 185. https://doi.org/10.1186/s12866-017-1095-2
  • Sica, A., Erreni, M., Allavena, P., & Porta, C. (2015). Macrophage polarization in pathology. Cellular and Molecular Life Sciences: CMLS, 72(21), 4111–4126. https://doi.org/10.1007/s00018-015-1995-y
  • Singh, R., Manjunatha, U., Boshoff, H. I., Há, Y. H., Niyomrattanakit, P., Ledwidge, R., Dowd, C. S., Lee, I. Y., Kim, P., Zhang, L., Kang, S., Keller, T. H., Jiricek, J., & Barry, C. E. (2008). PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 322(5906), 1392–1395. https://doi.org/10.1126/science.1164571
  • Song, Y., Dou, H., Gong, W., Liu, X., Yu, Z., Li, E., Tan, R., & Hou, Y. (2013). Bis­N­norgliovictin, a small­molecule compound from marine fungus, inhibits LPS-­induced inflammation in macrophages and improves survival in sepsis. European Journal of Pharmacology, 705(1–3), 49–60. https://doi.org/10.1016/j.ejphar.2013.02.008
  • Stantchev, T. S., Zack-Taylor, A., Mattson, N., Strebel, K., Broder, C. C., & Clouse, K. A. (2019). Cytokine effects on the entry of filovirus envelope pseudotyped virus-like particles into primary human macrophages. Viruses, 11(10), 889. https://doi.org/10.3390/v11100889
  • Stempin, C. C., Motrán, C. C., Aoki, M. P., Falcón, C. R., Cerbán, F. M., & Cervi, L. (2016). PD-L2 negatively regulates Th1-mediated immunopathology during Fasciola hepatica infection. Oncotarget, 7(47), 77721–77731. https://doi.org/10.18632/oncotarget.12790
  • Stijlemans, B., Guilliams, M., Raes, G., Beschin, A., Magez, S., & De Baetselier, P. (2007). African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 148(1), 3–13. https://doi.org/10.1016/j.vetpar.2007.05.005
  • Stoiber, W., Obermayer, A., Steinbacher, P., & Krautgartner, W. D. (2015). The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules, 5(2), 702–723. https://doi.org/10.3390/biom5020702
  • Sun, H., Sun, Y., Pu, J., Zhang, Y., Zhu, Q., Li, J., Gu, J., Chang, K.-C., & Liu, J. (2014). Comparative virus replication and host innate responses in human cells infected with three prevalent clades (2.3.4, 2.3.2, and 7) of highly pathogenic avian influenza H5N1 viruses. Journal of Virology, 88(1), 725–729. https://doi.org/10.1128/JVI.02510-13
  • Takei, H., Araki, A., Watanabe, H., Ichinose, A., & Sendo, F. (1996). Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. Journal of Leukocyte Biology, 59(2), 229–240. https://doi.org/10.1002/jlb.59.2.229
  • Tan, H.-Y., Wang, N., Li, S., Hong, M., Wang, X., & Feng, Y. (2016). The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxidative Medicine and Cellular Longevity, 2016, 1–16. https://doi.org/10.1155/2016/2795090
  • Tan, R. P., Ryder, I., Yang, N., Lam, Y. T., Santos, M., Michael, P. L., Robinson, D. A., Ng, M. K., & Wise, S. G. (2021). Macrophage polarization as a novel therapeutic target for endovascular intervention in peripheral artery disease. JACC: Basic to Translational Science, 6(8), 693–704. https://doi.org/10.1016/j.jacbts.2021.04.008
  • Tatano, Y., Shimizu, T., & Tomioka, H. (2014). Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Scientific Reports, 4(1), 4146. https://doi.org/10.1038/srep04146
  • Tawill, S., Le Goff, L., Ali, F., Blaxter, M., & Allen, J. E. (2004). Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infection and Immunity, 72(1), 398–407. https://doi.org/10.1128/IAI.72.1.398-407.2004
  • Thurlow, L. R., Hanke, M. L., Fritz, T., Angle, A., Aldrich, A., Williams, S. H., Engebretsen, I. L., Bayles, K. W., Horswill, A. R., & Kielian, T. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. The Journal of Immunology, 186(11), 6585–6596. https://doi.org/10.4049/jimmunol.1002794
  • Tian, X., Wang, Y., Lu, Y., Wang, W., Du, J., Chen, S., Zhou, H., Cai, W., & Xiao, Y. (2021). Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19. Cell Death and Disease, 12(7), 646. https://doi.org/10.1038/s41419-021-03931-1
  • Tillack, K., Breiden, P., Martin, R., & Sospedra, M. (2012). T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. The Journal of Immunology, 20(7), 3150–3159. https://doi.org/10.4049/jimmunol.1103414
  • Tundup, S., Srivastava, L., & Harn, D. A. (2012). Polarization of host immune responses by helminth-expressed glycans. Annals of the New York Academy of Sciences, 1253(1), E1–E13. https://doi.org/10.1111/j.1749-6632.2012.06618.x
  • Van der Does, A. M., Beekhuizen, H., Ravensbergen, B., Vos, T., Ottenhoff, T. H. M., van Dissel, J. T., Drijfhout, J. W., Hiemstra, P. S., & Nibbering, P. H. (2010). LL­37 directs macrophage differentiation toward macrophages with a proinflammatory signature. The Journal of Immunology, 185, 1442–1449. https://doi.org/10.4049/jimmunol.1000376
  • Vertêlo, P. C., Miranda, A. B., Labanca, L., Borges-Starling, A. L., & Cerdeira, C. D., Nogueira, C. F., Gonçalves, D. U. (2022). Prevalence of VIH-1/HTLV-1 co-infection and behavioral risk among people living with HIV in Belo Horizonte, Brazil. Revista de Salud Pública, 28(2), 75–85.
  • Vicetti Miguel, R. D., Harvey, S. A. K., LaFramboise, W. A., Reighard, S. D., Matthews, D. B., & Cherpes, T. L. (2013). Human female genital tract infection by the obligate intracellular bacterium Chlamydia trachomatis elicits robust type 2 immunity. PLOS ONE, 8(3), e58565. https://doi.org/10.1371/journal.pone.0058565
  • Wang, C., Dong, C., & Xiong, S. (2017). IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis. Journal of Molecular and Cellular Cardiology, 103, 22–30. https://doi.org/10.1016/j.yjmcc.2016.12.010
  • Wang, Y.-C., Ma, H.-D., Yin, X.-Y., Wang, Y.-H., Liu, Q.-Z., Yang, J.-B., Shi, Q.-H., Sun, B., Gershwin, M. E., & Lian, Z.-X. (2016). Forkhead box o1 regulates macrophage polarization following Staphylococcus aureus infection: Experimental murine data and review of the literature. Clinical Reviews in Allergy & Immunology, 51(3), 353–369. https://doi.org/10.1007/s12016-016-8531-1
  • Weinberg, J. B., Volkheimer, A. D., Rubach, M. P., Florence, S. M., Mukemba, J. P., Kalingonji, A. R., Langelier, C., Chen, Y., Bush, M., Yeo, T. W., Granger, D. L., Anstey, N. M., & Mwaikambo, E. D. (2016). Monocyte polarization in children with falciparum malaria: Relationship to nitric oxide insufficiency and disease severity. Scientific Reports, 6(1), 29151. https://doi.org/10.1038/srep29151
  • Williams, D. W., Engle, E. L., Shirk, E. N., Queen, S. E., Gama, L., Mankowski, J. L., Zink, M. C., & Clements, J. E. (2016). Splenic damage during SIV infection role of T-cell depletion and macrophage polarization and infection. The American Journal of Pathology, 186(8), 2068–2087. https://doi.org/10.1016/j.ajpath.2016.03.019
  • Wong, K.-W., & Jacobs, W. R. (2013). Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. The Journal of Infectious Diseases, 208(1), 109. https://doi.org/10.1093/infdis/jit097
  • Wu, Y., Shen, G., & Hao, C. (2023). Negative pressure wound therapy (NPWT) is superior to conventional moist dressings in wound bed preparation for diabetic foot ulcers. Saudi Medical Journal, 44(10), 1020–1029. https://doi.org/10.15537/smj.2023.44.20230386
  • Xavier, M. N., Winter, M. G., Spees, A. M., den Hartigh, A., Nguyen, K., Roux, C., Silva, T. A., Atluri, V., Kerrinnes, T., Keestra, A., Monack, D., Luciw, P., Eigenheer, R., Bäumler, A., Santos, R., & Tsolis, R. (2013). PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages. Cell Host & Microbe, 14(2), 159–170. https://doi.org/10.1016/j.chom.2013.07.009
  • Xu, F., Kang, Y., Zhang, H., Piao, Z., Yin, H., Diao, R., Xia, J., & Shi, L. (2013). Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. The Journal of Infectious Diseases, 208(3), 528–538. https://doi.org/10.1093/infdis/jit177
  • Xu, J., Zhang, H., Chen, L., Donghui, Z., Minjun, J., Haiwei, W., & Guanling, W. (2014). Schistosoma japonicum infection induces macrophage polarization. The Journal of Biomedical Research[Cdata[the Journal of Biomedical Research]], 28(4), 299–308. https://doi.org/10.7555/JBR.27.20130072
  • Yang, J., Zhang, L., Yu, C., Yang, X.-F., & Wang, H. (2014). Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research, 2(1), 1. https://doi.org/10.1186/2050-7771-2-1
  • Yin, A., Chen, W., Cao, L., Li, Q., Zhu, X., & Wang, L. (2021). FAM96A knock-out promotes alternative macrophage polarization and protects mice against sepsis. Clinical and Experimental Immunology, 203(3), 433–447. https://doi.org/10.1111/cei.13555
  • Yip, M. S., Leung, N. H., Cheung, C. Y., Li, P. H., Lee, H. H. Y., Daëron, M., Peiris, J. S. M., Bruzzone, R., & Jaume, M. (2014). Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virology Journal, 11(1), 82. https://doi.org/10.1186/1743-422X-11-82
  • Zawistowska-Deniziak, A., Basałaj, K., Strojny, B., & Młocicki, D. (2017). New data on human macrophages polarization by Hymenolepis diminuta tapeworm—An in vitro study. Frontiers in immunology, 8, 148. https://doi.org/10.3389/fimmu.2017.00148
  • Zhang, Q., Wang, Y., Zhai, N., Song, H., Li, H., Yang, Y., Li, T., Guo, X., Chi, B., Niu, J., Crispe, I. N., Su, L., & Tu, Z. (2016). HCV core protein inhibits polarization and activity of both M1 and M2 macrophages through the TLR2 signaling pathway. Scientific Reports, 6(1), 12. https://doi.org/10.1038/srep36160
  • Zhang, Y., Wang, F., Bhan, U., Huffnagle, G. B., Toews, G. B., Standiford, T. J., & Olszewski, M. A. (2010). TLR9 signaling is required for generation of the adaptive immune protection in Cryptococcus neoformans-infected lungs. The American Journal of Pathology, 177(2), 754–765. https://doi.org/10.2353/ajpath.2010.091104
  • Zhao, J., Zhao, J., Van Rooijen, N., & Perlman, S. (2009). Evasion by stealth: Inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLOS Pathogens, 5(10), e1000636. https://doi.org/10.1371/journal.ppat.1000636
  • Zhao, L., Xia, J., Li, T., Zhou, H., Ouyang, W., Hong, Z., Ke, Y., Qian, J., & Xu, F. (2016). Shp2 deficiency impairs the inflammatory response against Haemophilus influenzae by regulating macrophage polarization. The Journal of Infectious Diseases, 214(4), 625–633. https://doi.org/10.1093/infdis/jiw205
  • Zhao, W., Ma, L., Deng, D., Zhang, T., Han, L., Xu, F., Huang, S., Ding, Y., & Chen, X. (2023). M2 macrophage polarization: A potential target in pain relief. Frontiers in Immunology, 14, 1243149. https://doi.org/10.3389/fimmu.2023.1243149
  • Zheng, S., Zhang, P., Chen, Y., Zheng, S., Zheng, L., & Weng, Z. (2016). Inhibition of notch signaling attenuates schistosomiasis hepatic fibrosis via blocking macrophage M2 polarization. PLOS ONE, 11(11), e0166808. https://doi.org/10.1371/journal.pone.0166808
  • Zheng, X.-F., Hong, Y.-X., Feng, G.-J., Zhang, G.-F., Rogers, H., Lewis, M. A. O., Williams, D. W., Xia, Z.-F., Song, B., & Wei, X.-Q. (2013). Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression. PLOS ONE, 8(5), e63967. https://doi.org/10.1371/journal.pone.0063967

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.