1,629
Views
32
CrossRef citations to date
0
Altmetric
Articles

A Review of OCT Angiography in Glaucoma

& ORCID Icon
Pages 279-286 | Received 26 Apr 2019, Accepted 14 May 2019, Published online: 03 Jun 2019

References

  • Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol. March, 2009;20(2):73–78. doi:10.1097/ICU.0b013e32831eef82.
  • Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107:1287–1293. doi:10.1016/S0161-6420(00)00138-X.
  • Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007;125:805–812. doi:10.1001/archopht.125.6.805.
  • Leske MC, Connell AM, Schachat AP, Hyman L. The Barbados eye study. prevalence of open angle glaucoma. Arch Ophthalmol. June, 1994;112(6):821–829.
  • Leske MC, Heigl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:1965–1972. doi:10.1016/j.ophtha.2006.10.027.
  • Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R. Blood pressure, perfusion pressure, and open-angle glaucoma: the los angeles latino eye study. Invest Ophthalmol Vis Sci. 2010;51:2872–2877. doi:10.1167/iovs.08-2956.
  • Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. May, 2010;149(5):704–712. doi:10.1016/j.ajo.2010.01.018.
  • Charlson ME, de Moraes CG, Link A, et al. Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology. October, 2014;121(10):2004–2012. doi:10.1016/j.ophtha.2014.04.016.
  • Topouzis F, Wilson MR, Harris A, et al. Association of open-angle glaucoma with perfusion pressure status in the thessaloniki eye study. Am J Ophthalmol. May, 2013;155(5):843–851. doi:10.1016/j.ajo.2012.12.007.
  • De Moraes CG, Liebmann JM, Greenfield DS, et al. Risk factors for visual field progression in the low-pressure glaucoma treatment study. Am J Ophthalmol. October, 2012;154(4):702–711. doi:10.1016/j.ajo.2012.04.015.
  • Chung HJ, Hwang HB, Lee NY. The association between primary open-angle glaucoma and blood pressure: two aspects of hypertension and hypotension. Biomed Res Int. 2015;2015:827516. doi:10.1155/2015/827516.
  • Mozaffarieh M, Osusky R, Schotzau A, Flammer J. Relationship between optic nerve head and finger blood flow. Eur J Ophthalmol. 2010;20(1):136–141.
  • Onda E, Cioffi GA, Bacon DR, Van Buskirk EM. Microvasculature of the human optic nerve. Am J Ophthalmol. July, 1995;120(1):92–102.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:OCT451–OCT459. doi:10.1167/iovs.15-18944.
  • Kornzweig AL, Eliasoph I, Feldstein M. Selective atrophy of the radial peripapillary capillaries in chronic Glaucoma. Arch Ophthalmol. 1968;80:696–702.
  • Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmic. 1969;53(11):721–748. doi:10.1136/bjo.53.11.721.
  • Francois J, de Laey JJ. Fluorescein angiography of the glaucomatous disc. Ophthalmologica. 1974;168(4):288–298. doi:10.1159/000307051.
  • Arend O, Plange N, Sponsel WE, Remky A. Pathogenic aspects of glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma. Brain Res Bull. 2004;62:517–524. doi:10.1016/j.brainresbull.2003.07.008.
  • Talusan E, Schwartz B. Specificity of fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol. 1977;95:2166–2175.
  • Hithchings RA, Spaeth GL. Fluorescien angiography in chronic simple and low-tension glaucoma. Br J Ophthalmic. 1977;61:126–132. doi:10.1136/bjo.61.2.126.
  • Lee EJ, Lee KM, Lee SH, Kim TW. Parapapillary choroidal microvasculature dropout in Glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography. Ophthalmology. August, 2017;124(8):1209–1217. doi:10.1016/j.ophtha.2017.03.039.
  • O’Brart DP, de Souza Lima M, Bartsch DU, Freeman W, Weinreb RN. Indocyanine green angiopgraphy of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmic. 1971;111:3–83.
  • Tobe LA, Harris A, Hussain RM, et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 2015;99:609–612. doi:10.1136/bjophthalmol-2014-305780.
  • Resch H, Schmidl D, Hommer A, et al. Correlation of optic disc morphology and ocular perfusion parameters in patients with primary open angle glaucoma. Acta Ophthalmol. 2011;89:544–549. doi:10.1111/j.1755-3768.2010.02081.x.
  • Jia Y, Wie E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in Glaucoma. Ophthalmology. July, 2014;121(7):1322–1332. doi:10.1016/j.ophtha.2014.01.021.
  • Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. December 1, 2012;3(12):3127–3137. doi:10.1364/BOE.3.003127.
  • Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of peripapillary & vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101:1066–1070. doi:10.1136/bjophthalmol-2016-309377.
  • Hagag AM, Gao SS, Jia Y, Huang D. Optical Coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7(3):115–129. doi:10.4103/tjo.tjo_31_17.
  • Chiou HJ, Chou YH, Liu CJ, et al. Evaluation of ocular arterial changes in glaucoma with color Doppler ultrasonography. J Ultrasound Med. April, 1999;18(4):295–302.
  • Chansangpetch S, Lin SL. Optical coherence tomography angiography in glaucoma care. Curr Eye Res. September, 2018;43(9):1067–1082. doi:10.1080/02713683.2018.1475013.
  • Chen CL, Wang RK. Optical coherence tomography based angiography. Biomedical Optical Express. February 1, 2017;8(2):1056. doi:10.1364/BOE.8.001056.
  • Huang D, Liu L, You Q. OCTA: a new tool for glaucoma evaluation. Ophthalmol Manage. June, 2018;22:22–24.
  • Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography. Retina. November, 2015;35(11):2161–2162. doi:10.1097/IAE.0000000000000881.
  • Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. February 13, 2012;20(4):4710–4725. doi:10.1364/OE.20.004710.
  • Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045–1052. doi:10.1001/jamaophthalmol.2015.2225.
  • Spaide R, Fujimoto JG, Waheed NK. Image artifacts in optical coherence angiography. Retina. November, 2015;35(11):2163–2180. doi:10.1097/IAE.0000000000000765.
  • Dastiridou A, Chopra V. Potential Applications of optical coherence tomography angiography in glaucoma. Current Opin Ophthalmol. May, 2018;29(3):226–233. doi:10.1097/ICU.0000000000000475.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124:709–719. doi:10.1016/j.ophtha.2017.01.004.
  • Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based micro- angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT475–OCT485. doi:10.1167/iovs.16-19420.
  • Kim SB, Lee EJ, Han JC, Kee C. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography. PLoS One. 2017;12:e0184297. doi:10.1371/journal.pone.0184297.
  • Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early gaucoma. J Glaucoma. 2017;26:438–443. doi:10.1097/IJG.0000000000000649.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in Glaucoma. Ophthalmology. 2016;123:2498–2508. doi:10.1016/j.ophtha.2016.08.041.
  • Scripsema NK, Garcia PM, Bavier RD, et al. Optical coherence tomorgraphy angiography analysis of perfused peripapillary capillaries in primary open-angle flaucoma and normal-tension glaucoma. Invest Ophthalmic Vis Sci. 2016;123(12):2498–2508.
  • Suh MH, Zangwill LM, Manalastas PIC, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. December, 2016;123(12):2509–2518. doi:10.1016/j.ophtha.2016.09.002.
  • Zhang S, Wu C, Liu C, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle closure glaucoma. Am J Ophthalmol. October, 2017;182:194–200. doi:10.1016/j.ajo.2017.07.024.
  • Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel Density and structural measurements of optical coherence tomograpy in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;101(8):1066–1070.
  • Wang X, Jiang C, Kong X, et al. Peripapillary retinal vessel density in eyes with acute primary angle closure: an optical coherence tomography angiography study. Grafes Ach Clin Exp Ophthalmol. 2017;255(5):1013–1018. doi:10.1007/s00417-017-3593-1.
  • Suwan Y, Geyman LS, Fard MA, et al. Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma versus POAG and healthy controls: an OCTA study. Asia Pac J Ophthalmol. 2017;7:84–89.
  • Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Grafes Ach Clin Exp Ophthalmol. 2015;253(9):1557–1564. doi:10.1007/s00417-015-3095-y.
  • Geyman LS, Garg RA, Suwan Y, et al. Peripapillary perfusied capillary desity in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmic. September, 2017;101(9):1261–1268. doi:10.1136/bjophthalmol-2016-309642.
  • Wan KH, Lam AKN, Leung CKS. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol. 2018;136(8):866–874. doi:10.1001/jamaophthalmol.2018.1627.
  • Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthamol. 2017. doi:10.1007/s10792-017-0544.0.
  • Akagi T, Zangwill LM, Shoji T, et al. Optic disc microvascular dropout in primary open angle glaucoma measured with optical coherence tomography angiography. PLoS ONE. 2018;13(8):e0201729. doi:10.1371/journal.pone.0201729.
  • Suh MH, Zangwill LM, Manalastas PI, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016;123:2309–2317. doi:10.1016/j.ophtha.2016.07.023.
  • Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124:1589–1599. doi:10.1016/j.ophtha.2017.06.002.
  • Rao HL, Pradhan ZS, Weinreb RN, et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE. 2017;12(3):e0173930. doi:10.1371/journal.pone.0173930.
  • In JH, Lee SY, Cho SH, Hong YJ. Peripapillary vessel density reversal after trabeculectomy in glaucoma. J Ophthalmol. June 26, 2018;2018:8909714. doi:10.1155/2018/8909714.
  • Shin JW, Sung KR, Uhm KB, et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58:5993–5999. doi:10.1167/iovs.17-22787.
  • Hollo G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017;26(1):e7–e10. doi:10.1097/IJG.0000000000000527.
  • Lee EJ, Lee KM, Lee SH, Kim TW. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthamol Vis Sci. 2016;57(14):6265–6270. doi:10.1167/iovs.16-20287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.