479
Views
2
CrossRef citations to date
0
Altmetric
Review

Machine Learning Applications in Pediatric Ophthalmology

AUTHORS

, MD & , MD
Pages 210-217 | Received 14 Jan 2021, Accepted 02 Feb 2021, Published online: 27 Feb 2021

References

  • Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–731.doi:10.1038/s41551-018-0305-z.
  • Bini SA. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: what Do These Terms Mean and How Will They Impact Health Care? J Arthroplasty. 2018;33(8):2358–2361. doi:10.1016/j.arth.2018.02.067.
  • Lee A, Taylor P, Kalpathy-Cramer J, et al. Machine Learning Has Arrived! Ophthalmology. Ophthalmology. 2017;124(12):1726–1728. doi:10.1016/j.ophtha.2017.08.046.
  • Lu W, Tong Y, Yu Y, et al. Applications of Artificial Intelligence in Ophthalmology: general Overview. J Ophthalmol. 2018;2018:5278196. doi:10.1155/2018/5278196.
  • Armstrong A, Walsh W, Corbett C. Multiple facial eccrine hidrocystomas: effective topical therapy with atropine. Br J Dermatol. 1998;139(3):558–559. doi:10.1046/j.1365-2133.1998.02441.x.
  • Rahimy E. Deep learning applications in ophthalmology. Curr Opin Ophthalmol. 2018;29(3):254–260. doi:10.1097/ICU.0000000000000470.
  • Caixinha M, Nunes S. Machine Learning Techniques in Clinical Vision Sciences. Curr Eye Res. 2017;42(1):1–15. doi:10.1080/02713683.2016.1175019.
  • Catania LJ, Nicolitz E. Artificial Intelligence and Its Applications in Vision and Eye Care. Advances in Ophthalmology and Optometry. 2018;3(1):21–38. doi:10.1016/j.yaoo.2018.04.001.
  • Du X-L, Li W-B, Hu B-J. Application of artificial intelligence in ophthalmology. Int J Ophthalmol. 2018;11(9):1555–1561. doi:10.18240/ijo.2018.09.21.
  • Dutt S, Sivaraman A, Savoy F, et al. Insights into the growing popularity of artificial intelligence in ophthalmology. Indian J Ophthalmol. 2020;68(7):1339–1346. doi:10.4103/ijo.IJO_1754_19.
  • Balyen L, Peto T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia-Pac J Ophthalmol Phila Pa. 2019;8:264–272.
  • Li J-PO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. In: Prog Retin Eye Res. September. Elsevier: Progress in Retinal and Eye Research. 2020:100900.
  • Moraru AD, Costin D, Moraru RL, et al. Artificial intelligence and deep learning in ophthalmology - present and future (Review). Exp Ther Med. 2020;20(4):3469–3473. doi:10.3892/etm.2020.9118.
  • Scruggs BA, Chan RVP, Kalpathy-Cramer J, et al. Artificial Intelligence in Retinopathy of Prematurity Diagnosis. Transl Vis Sci Technol. 2020;9(2):5. doi:10.1167/tvst.9.2.5.
  • Reid JE, Eaton E. Artificial intelligence for pediatric ophthalmology. Curr Opin Ophthalmol. 2020;68(5):337–346. doi:10.1097/ICU.0000000000000593.
  • Pueyo V, Pérez-Roche T, Prieto E, et al. Development of a system based on artificial intelligence to identify visual problems in children: study protocol of the TrackAI project. BMJ Open. 2020;10(2):e033139. doi:10.1136/bmjopen-2019-033139.
  • Liu Y, Chen P-HC, Krause J, et al. How to Read Articles That Use Machine Learning: users’ Guides to the Medical Literature. JAMA. 2019(322):1806–1816.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/nature14539.
  • Ting DSW, Peng L, Varadarajan AV; Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res. 2019;72:100759. doi:10.1016/j.preteyeres.2019.04.003.
  • Grewal PS, Oloumi F, Rubin U, et al. Deep learning in ophthalmology: a review. Can J Ophthalmol J Can Ophtalmol. 2018;53(4):309–313. doi:10.1016/j.jcjo.2018.04.019.
  • Jeon S, Liu Y, Li J-PO, et al. AI papers in ophthalmology made simple. Eye. 2020(34):1947–1949.
  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. doi:10.1148/radiology.143.1.7063747.
  • Tan Z, Simkin S, Lai C, et al. Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease. Transl Vis Sci Technol. 2019;8(6):23. doi:10.1167/tvst.8.6.23.
  • Antaki F, Bachour K, Kim TN, et al. The Role of Telemedicine to Alleviate an Increasingly Burdened Healthcare System: retinopathy of Prematurity. Ophthalmology and Therapy. 2020;9(3):449–464. doi:10.1007/s40123-020-00275-5.
  • Wallace DK, Quinn GE, Freedman SF, et al. Agreement among pediatric ophthalmologists in diagnosing plus and pre-plus disease in retinopathy of prematurity. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2008;12(4):352–356. doi:10.1016/j.jaapos.2007.11.022.
  • Brown JM, Campbell JP, Beers A, et al. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmology. 2018;136(7):803–810. doi:10.1001/jamaophthalmol.2018.1934.
  • Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks. EBioMedicine. 2018;35:361–368. doi:10.1016/j.ebiom.2018.08.033.
  • Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global prevalence of childhood cataract: a systematic review. Eye Lond Engl. 2016;30:1160–1169.
  • Lenhart PD, Courtright P, Wilson ME, et al. Global challenges in the management of congenital cataract: proceedings of the 4th International Congenital Cataract Symposium held on March 7, 2014, New York, New York, USA. J Am Assoc Pediatr Ophthalmol Strabismus JAAPOS. 2015;19:e1–e8.
  • Bothun ED, Wilson ME, Traboulsi EI, et al. Outcomes of Unilateral Cataracts in Infants and Toddlers 7 to 24 Months of Age: toddler Aphakia and Pseudophakia Study (TAPS). Ophthalmology. 2019;126(8):1189–1195. doi:10.1016/j.ophtha.2019.03.011.
  • Zhang X, Shi Y. Prediction of myopic shift in paediatric pseudophakia using a neural network: a preliminary study. Zhonghua Yan Ke Za Zhi Chin J Ophthalmol. 2007;43:987–995.
  • Jiang J, Liu X, Zhang K, et al. Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network. Biomed Eng Online. 2016;11(1):132. doi:10.1186/s12938-017-0420-1.
  • Liu X, Jiang J, Zhang K, et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PloS One. 2017;12(3):e0168606. doi:10.1371/journal.pone.0168606.
  • Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng. 2017;1(2):1–8. doi:10.1038/s41551-016-0024.
  • Lin H, Li R, Liu Z, et al. Diagnostic Efficacy and Therapeutic Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: a Multicentre Randomized Controlled Trial. EClinicalMedicine. 2019;9:52–59. doi:10.1016/j.eclinm.2019.03.001.
  • Zhang K, Liu X, Jiang J, et al. Prediction of postoperative complications of pediatric cataract patients using data mining. J Transl Med. 2019;17(1):2. doi:10.1186/s12967-018-1758-2.
  • Long E, Chen J, Wu X, et al. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing. NPJ Digit Med. 2020;3(1):112. doi:10.1038/s41746-020-00319-x.
  • Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning. EBioMedicine. 2020;51:102621. doi:10.1016/j.ebiom.2019.102621.
  • Van Eenwyk J, Agah A, Giangiacomo J, et al. Artificial intelligence techniques for automatic screening of amblyogenic factors. Trans Am Ophthalmol Soc. 2008;106:64–73. discussion 73-74..
  • Gramatikov BI. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning. Biomed Eng Online. 2017;16(1):52. doi:10.1186/s12938-017-0339-6.
  • Chun J, Kim Y, Shin KY, et al. Deep Learning–Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: model Development and Validation Study. JMIR Medical Informatics. 2020;8(5):e16225. doi:10.2196/16225.
  • Murali K, Krishna V, Krishna V, et al. Application of deep learning and image processing analysis of photographs for amblyopia screening. Indian J Ophthalmol. 2020;68(7):1407–1410. doi:10.4103/ijo.IJO_1399_19.
  • Ma S, Guan Y, Yuan Y, et al. A One-Step, Streamlined Children’s Vision Screening Solution Based on Smartphone Imaging for Resource-Limited Areas: design and Preliminary Field Evaluation. JMIR mHealth and uHealth. 2020;8(7):e18226. doi:10.2196/18226.
  • Tang T, Yu Z, Xu Q, et al. A machine learning-based algorithm used to estimate the physiological elongation of ocular axial length in myopic children. Eye Vis Lond Engl. 2020;7(1):50. doi:10.1186/s40662-020-00214-2.
  • Chandna A, Fisher AC, Cunningham I, et al. Pattern Recognition of Vertical Strabismus Using an Artificial Neural Network (StrabNet). Strabismus. 2009;17(4):131–138. doi:10.3109/09273970903234032.
  • Fisher AC, Chandna A, Cunningham IP. The differential diagnosis of vertical strabismus from prism cover test data using an artificially intelligent expert system. Med Biol Eng Comput. 2007;45(7):689–693. doi:10.1007/s11517-007-0212-z.
  • Sousa de Almeida JD, Silva AC, Teixeira JAM, et al. Computer-Aided Methodology for Syndromic Strabismus Diagnosis. J Digit Imaging. 2015;28:462–473.
  • Almeida JDS de, Silva AC, Paiva AC de, et al. Computational methodology for automatic detection of strabismus in digital images through Hirschberg test. Comput Biol Med. 2012;42:135–146.
  • Almeida JDS de, Silva AC, Teixeira JAM, et al. Surgical planning for horizontal strabismus using Support Vector Regression. Comput Biol Med. 2015;63:178–186.
  • Chen Z, Fu H, Lo W-L, et al. Strabismus Recognition Using Eye-Tracking Data and Convolutional Neural Networks. Journal of Healthcare Engineering. 2018;2018:7692198. doi:10.1155/2018/7692198.
  • Chen ZH, Fu H, Lo WL, et al. Eye-tracking-aided digital system for strabismus diagnosis. Healthcare Technology Letters. 2018;5(1):1–6. doi:10.1049/htl.2016.0081.
  • Lu J, Fan Z, Zheng C, et al.Automated Strabismus Detection for Telemedicine Applications.arXiv:180902940.December,2018
  • Liu Y, Liu C, Zhang W, et al. Model of a Support Vector Machine to Assess the Functional Cure for Surgery of Intermittent Exotropia. Sci Rep. 2019;9(1):8321. doi:10.1038/s41598-019-38969-x.
  • Solebo AL. From Development to Application: bridging the Translational Gap of Artificial Intelligence-based Diagnostics for Childhood Cataract. EClinicalMedicine. 2019;9:7–8. doi:10.1016/j.eclinm.2019.03.002.
  • Whitman MC, Vanderveen DK. Complications of pediatric cataract surgery. Semin Ophthalmol. 2014;29(5–6):414–420. doi:10.3109/08820538.2014.959192.
  • Sramka M, Slovak M, Tuckova J, et al. Improving clinical refractive results of cataract surgery by machine learning. PeerJ. 2019;7:e7202. doi:10.7717/peerj.7202.
  • Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al. Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications. PloS One. 2016;11(5):e0155705. doi:10.1371/journal.pone.0155705.
  • Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115(3):211–252. doi:10.1007/s11263-015-0816-y.
  • Pascual M, Huang J, Maguire MG, et al. Risk Factors for Amblyopia in the Vision In Preschoolers Study. Ophthalmology. 2014;121(3):622–629.e1. doi:10.1016/j.ophtha.2013.08.040.
  • Cibis GW. Video vision development assessment (VVDA): combining the Brückner test with eccentric photorefraction for dynamic identification of amblyogenic factors in infants and children. Trans Am Ophthalmol Soc. 2016;11:643–685.
  • Amitava AK. Commentary: how useful is a deep learning smartphone application for screening for amblyogenic risk factors? Indian J Ophthalmol. 2020;68(7):1411. doi:10.4103/ijo.IJO_1900_20.
  • Wen G, Tarczy-Hornoch K, McKean-Cowdin R, et al. Prevalence of Myopia, Hyperopia, and Astigmatism in Non-Hispanic White and Asian Children. Ophthalmology. 2013;120(10):2109–2116. doi:10.1016/j.ophtha.2013.06.039.
  • Prevalence of Myopia and Hyperopia in. Prevalence of Myopia and Hyperopia in 6- to 72-Month-Old African American and Hispanic Children: the Multi-Ethnic Pediatric Eye Disease Study. Ophthalmology. 2010;117(1):140. doi:10.1016/j.ophtha.2009.06.009.
  • Ikuno Y. Overview of the Complications of High Myopia. Retina Phila Pa. 2017;37(12):2347–2351. doi:10.1097/IAE.0000000000001489.
  • Dolgin E. The myopia boom. Nature. 2015;519(7543):276–278. doi:10.1038/519276a.
  • Foster PJ, Jiang Y. Epidemiology of myopia. Eye. 2014;28(2):202–208. doi:10.1038/eye.2013.280.
  • Prousali E, Haidich A-B, Fontalis A, et al. Efficacy and safety of interventions to control myopia progression in children: an overview of systematic reviews and meta-analyses. BMC Ophthalmology. 2019;19(1):106. doi:10.1186/s12886-019-1112-3.
  • Chia A, Lu Q-S Q-S, Tan D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2. Ophthalmology. 2016;123(2):391–399. doi:10.1016/j.ophtha.2015.07.004.
  • Lin H, Long E, Ding X, Lin H, Long E, Ding X, et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study. PLoS Med. 2018;15(11):e1002674. doi:10.1371/journal.pmed.1002674.
  • Varadarajan AV, Poplin R, Blumer K, et al. Deep Learning for Predicting Refractive Error From Retinal Fundus Images. Invest Ophthalmol Vis Sci. 2018;59(7):2861–2868. doi:10.1167/iovs.18-23887.
  • Mohney BG, McKenzie JA, Capo JA, et al. Mental illness in young adults who had strabismus as children. Pediatrics. 2008;122(5):1033–1038. doi:10.1542/peds.2007-3484.
  • Mojon-Azzi SM, Kunz A, Mojon DS. The perception of strabismus by children and adults. Graefes Arch Clin Exp Ophthalmol. 2011;249(5):753–757. doi:10.1007/s00417-010-1555-y.
  • Hull S, Tailor V, Balduzzi S, et al.Tests for detecting strabismus in children aged 1 to 6 years in the community.Cochrane Database Syst Rev.2017;11. CD011221 10.1002/14651858.CD011221.pub2
  • Albicka K, Metz HS, Albicki A, et al. Computer-assisted diagnosis of strabismus. J Pediatr Ophthalmol Strabismus. 1987;24(5):228–231.
  • Schiavi C, Orciuolo M. Automated measurement of strabismic deviation Editorial review. Curr Opin Ophthalmol. 1992;3(6):731–734. doi:10.1097/00055735-199212000-00002.
  • Valente TLA, De Almeida JDS, Silva AC, et al. Automatic diagnosis of strabismus in digital videos through cover test. Comput Methods Programs Biomed. 2017;140:295–305. doi:10.1016/j.cmpb.2017.01.002.
  • Kim WO, Kil HK, Lee JS, et al. Prediction of oculocardiac reflex in strabismus surgery using neural networks. Yonsei Med J. 1999;40(3):244–247. doi:10.3349/ymj.1999.40.3.244.
  • Phanphruk W, Liu Y, Morley K, et al. Validation of StrabisPIX, a Mobile Application for Home Measurement of Ocular Alignment. Transl Vis Sci Technol. 2019;8(2):9. doi:10.1167/tvst.8.2.9.
  • Pundlik S, Tomasi M, Liu R, et al. Development and Preliminary Evaluation of a Smartphone App for Measuring Eye Alignment. Transl Vis Sci Technol. 2019;8(1):19. doi:10.1167/tvst.8.1.19.
  • Luo G, Pundlik S, Tomasi M, et al. Using an Automated Hirschberg Test App to Evaluate Ocular Alignment. J Vis Exp JoVE. 2020. https://www.jove.com/t/60908/using-an-automated-hirschberg-test-app-to-evaluate-ocular-alignment
  • Dericioğlu V, Çerman E. Quantitative measurement of horizontal strabismus with digital photography. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2019;23:e1–18.e6.
  • Miao Y, Jeon JY, Park G, et al. Virtual reality-based measurement of ocular deviation in strabismus. Comput Methods Programs Biomed. 2020;185:105132. doi:10.1016/j.cmpb.2019.105132.
  • Nesaratnam N, Thomas P, Vivian A. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment. Eye Lond Engl. 2017;31:1503–1506.
  • Pisapia JM, Akbari H, Rozycki M, et al. Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning. Neuro-Oncol Adv. 2020;2:90
  • Nilsson Benfatto M, Öqvist Seimyr G, Ygge J, et al. Screening for Dyslexia Using Eye Tracking during Reading. PLoS ONE. 2016: 11.
  • Król ME, Król M. A novel machine learning analysis of eye-tracking data reveals suboptimal visual information extraction from facial stimuli in individuals with autism. Neuropsychologia. 2019;129:397–406. doi:10.1016/j.neuropsychologia.2019.04.022.
  • Kang J, Han X, Song J, et al. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput Biol Med. 2020;120:103722. doi:10.1016/j.compbiomed.2020.103722.
  • Nag A, Haber N, Voss C, et al. Toward Continuous Social Phenotyping: analyzing Gaze Patterns in an Emotion Recognition Task for Children With Autism Through Wearable Smart Glasses. J Med Internet Res. 2020;22(4):e13810. doi:10.2196/13810.
  • Wan G, Kong X, Sun B, et al. Applying Eye Tracking to Identify Autism Spectrum Disorder in Children. J Autism Dev Disord. 2019;49(1):209–215. doi:10.1007/s10803-018-3690-y.
  • Varela Casal P, Lorena Esposito F, Morata Martínez I, et al. Clinical Validation of Eye Vergence as an Objective Marker for Diagnosis of ADHD in Children. J Atten Disord. 2019;23(6):599–614. doi:10.1177/1087054717749931.
  • Vogelsang L, Gilad-Gutnick S, Ehrenberg E, et al. Potential downside of high initial visual acuity. Proc Natl Acad Sci U S A. 2018;115(44):11333–11338. doi:10.1073/pnas.1800901115.
  • Mondloch CJ, Segalowitz SJ, Lewis TL, et al. The effect of early visual deprivation on the development of face detection. Dev Sci. 2013;16(5):728–742. doi:10.1111/desc.12065.
  • Grady CL, Mondloch CJ, Lewis TL, et al. Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network. Neuropsychologia. 2014;57:122–139. doi:10.1016/j.neuropsychologia.2014.03.005.
  • Dai B, Yu Y, Huang L, et al. Application of neural network model in assisting device fitting for low vision patients. Ann Transl Med. 2020;8:702.
  • Lin W-C, Chen JS, Chiang MF, et al. Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology. Transl Vis Sci Technol. 2020;9(2):13. doi:10.1167/tvst.9.2.13.
  • Devi SP, Rao KS, Sangeetha SS. Prediction of surgery times and scheduling of operation theaters in ophthalmology department. J Med Syst. 2012;36(2):415–430. doi:10.1007/s10916-010-9486-z.
  • Lin W-C, Goldstein IH, Hribar MR, et al. Predicting Wait Times in Pediatric Ophthalmology Outpatient Clinic Using Machine Learning. AMIA Annu Symp Proc. 2020;2019:1121–1128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.