417
Views
10
CrossRef citations to date
0
Altmetric
Review

Home Monitoring for Glaucoma: Current Applications and Future Directions

&
Pages 310-314 | Received 19 Feb 2021, Accepted 19 Feb 2021, Published online: 10 Mar 2021

REFERENCES

  • Blindness GBD, Vision Impairment C. Vision loss expert group of the global burden of disease, s. causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: the right to sight: an analysis for the global burden of disease study. Lancet Glob Health. 2021;9:e144–e160. doi:10.1016/S2214-109X(20)30489-7.
  • Tham YC, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090.doi:10.1016/j.ophtha.2014.05.013.
  • Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening, diagnosis, and management: a review. JAMA. 2021;325(2):164–174. doi:10.1001/jama.2020.21899.
  • Liu J, De Francesco T, Schlenker M, Ahmed II. I care home tonometer: a review of characteristics and clinical utility. Clin Ophthalmol. 2020;14:4031–4045. doi:10.2147/OPTH.S284844.
  • Brucker J, Bhatia V, Sahel JA, Girmens JF, Odysight: M-S-S, Mobile Medical A. Application designed for remote monitoring-a prospective study comparison with standard clinical eye tests. Ophthalmol Ther. 2019;8(3):461–476. doi:10.1007/s40123-019-0203-9.
  • Samanta A, Mauntana S, Barsi Z, Yarlagadda B, Nelson PC. Is your vision blurry? A systematic review of home-based visual acuity for telemedicine. J Telemed Telecare. 2020;1357633X2097039. doi:10.1177/1357633X20970398.
  • Bastawrous A, et al. Development and validation of a smartphone-based visual acuity test (peek acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmol. 2015;133(8):930–937.doi:10.1001/jamaophthalmol.2015.1468.
  • Han X, et al. Development and validation of a smartphone-based visual acuity test (vision at home). Transl Vis Sci Technol. 2019;8(4):27.doi:10.1167/tvst.8.4.27.
  • Perera C, Chakrabarti R, Islam FM, Crowston J. The eye phone study: reliability and accuracy of assessing Snellen visual acuity using smartphone technology. Eye (Lond). 2015;29(7):888–894. doi:10.1038/eye.2015.60.
  • Yeung WK et al. eHealth tools for the self-testing of visual acuity: a scoping review. NPJ Digit Med 2, 82, doi:10.1038/s41746-019-0154-5 (2019).
  • Bowd C, Weinreb RN, Zangwill LM. Evaluating the optic disc and retinal nerve fiber layer in glaucoma i: clinical examination and photographic methods. Semin Ophthalmol. 2000;15(4):194–205. doi:10.3109/08820530009037871.
  • Bastawrous A, et al. Clinical validation of a smartphone-based adapter for optic disc imaging in kenya. JAMA Ophthalmol. 2016;134(2):151–158.doi:10.1001/jamaophthalmol.2015.4625.
  • Russo A, et al. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading vertical cup-to-disc ratio. J Glaucoma. 2016;25(9):e777–781.doi:10.1097/IJG.0000000000000499.
  • Wintergerst MWM, Brinkmann CK, Holz FG, Finger RP. Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation. Sci Rep. 2018;8(1):10228. doi:10.1038/s41598-018-28585-6.
  • Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP. Risk factors for open-angle glaucoma. The Barbados eye study. Arch Ophthalmol. 1995;113(7):918–924. doi:10.1001/archopht.1995.01100070092031.
  • Bengtsson B, Leske MC, Hyman L, Heijl A. Early manifest glaucoma trial, g. fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(2):205–209. doi:10.1016/j.ophtha.2006.07.060.
  • The Advanced Glaucoma Intervention Study (AGIS). 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130:(4). 429–440. 10.1016/s0002-9394(00)00538-9.
  • Kass MA, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–713. discussion 829-730. doi:10.1001/archopht.120.6.701.
  • The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998;126(4):498–505. doi:10.1016/s0002-9394(98)00272-4.
  • Leske MC, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.doi:10.1001/archopht.121.1.48.
  • Sit AJ. Continuous monitoring of intraocular pressure: rationale and progress toward a clinical device. J Glaucoma. 2009;18(4):272–279. doi:10.1097/IJG.0b013e3181862490.
  • Jonas JB, Budde W, Stroux A, Oberacher-Velten IM, Junemann A. Single intraocular pressure measurements and diurnal intraocular pressure profiles. Am J Ophthalmol. 2005;139(6):1136–1137. doi:10.1016/j.ajo.2004.12.012.
  • Asrani S, et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–142.doi:10.1097/00061198-200004000-00002.
  • Mudie LI, et al. The icare home (ta022) study: performance of an intraocular pressure measuring device for self-tonometry by glaucoma patients. Ophthalmology. 2016;123(8):1675–1684.doi:10.1016/j.ophtha.2016.04.044.
  • Dabasia PL, Lawrenson JG, Murdoch IE. Evaluation of a new rebound tonometer for self-measurement of intraocular pressure. Br J Ophthalmol. 2016;100(8):1139–1143. doi:10.1136/bjophthalmol-2015-307674.
  • Pronin S, Brown L, Megaw R, Tatham AJ. Measurement of intraocular pressure by patients with glaucoma. JAMA Ophthalmol. 2017;135(10):1030–1036. doi:10.1001/jamaophthalmol.2017.3151.
  • Awadalla MS, et al. Using Icare HOME tonometry for follow-up of patients with open-angle glaucoma before and after selective laser trabeculoplasty. Clin Exp Ophthalmol. 2020;48(3):328–333.doi:10.1111/ceo.13686.
  • Mali YP, Rotruck JC, Bitner DP, Freedman SF. Home tonometry in childhood glaucoma: clinical indications and physician and parental attitudes. J Aapos. 2018;22(4):319–321 e313. doi:10.1016/j.jaapos.2018.01.004.
  • Gandhi NG, Jones SK, Freedman SF. Icare ONE home tonometry in children with and without known glaucoma. J Glaucoma. 2016;25(2):e66–69. doi:10.1097/IJG.0000000000000257.
  • Gandhi NG, Prakalapakorn SG, El-Dairi MA, Jones SK, Freedman SF. Icare ONE rebound versus Goldmann applanation tonometry in children with known or suspected glaucoma. Am J Ophthalmol. 2012;154(5):843–849 e841. doi:10.1016/j.ajo.2012.05.003.
  • Go MS, Barman NR, House RJ, Freedman SF. Home tonometry assists glaucoma drainage device management in childhood glaucoma. J Glaucoma. 2019;28(9):818–822. doi:10.1097/IJG.0000000000001322.
  • Icare((R) NS. rebound tonometers: review of their characteristics and ease of use. Clin Ophthalmol. 2018;12:1245–1253. doi:10.2147/OPTH.S163092.
  • Nelson-Quigg JM, Twelker JD, Johnson CA. Response properties of normal observers and patients during automated perimetry. Arch Ophthalmol. 1989;107(11):1612–1615. doi:10.1001/archopht.1989.01070020690029.
  • Advanced glaucoma intervention study. 2. visual field test scoring and reliability. Ophthalmology. 1994;101(8):1445–1455. doi:10.1016/S0161-6420(94)31171-7.
  • Chauhan BC, et al. Rates of glaucomatous visual field change in a large clinical population. Invest Ophthalmol Vis Sci. 2014;55(7):4135–4143.doi:10.1167/iovs.14-14643.
  • Jansonius NM. On the accuracy of measuring rates of visual field change in glaucoma. Br J Ophthalmol. 2010;94(10):1404–1405. doi:10.1136/bjo.2009.164897.
  • Chauhan BC, et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol. 2008;92(4):569–573.doi:10.1136/bjo.2007.135012.
  • Vingrys AJ, et al. Validation of a Tablet as a Tangent Perimeter. Transl Vis Sci Technol. 2016;5(3):3.doi:10.1167/tvst.5.4.3.
  • Kong YX, He M, Crowston JG, Vingrys AJA. Comparison of perimetric results from a tablet perimeter and Humphrey field analyzer in glaucoma patients. Transl Vis Sci Technol. 2016;5(6). doi:10.1167/tvst.5.6.2.
  • Prea SM. et al. Six-month longitudinal comparison of a portable tablet perimeter with the Humphrey field analyzer. Am J Ophthalmol. 2018;190:9–16. doi:10.1016/j.ajo.2018.03.009.
  • Matsumoto C, et al. Visual field testing with head-mounted perimeter ‘imo’. PLoS One. 2016;11(8):e0161974.doi:10.1371/journal.pone.0161974.
  • Goukon H, Hirasawa K, Kasahara M, Matsumura K, Shoji N. Comparison of Humphrey field analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss. PLoS One. 2019;14:e0224711. doi:10.1371/journal.pone.0224711.
  • Tsapakis S. et al. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter. Clin Ophthalmol. 2017;11:1431–1443. doi:10.2147/OPTH.S131160.
  • Alawa KA, et al. Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br J Ophthalmol. 2019. doi:10.1136/bjophthalmol-2019-314031.
  • Huang D, et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181.doi:10.1126/science.1957169.
  • Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol. 1980;98(9):1564–1571. doi:10.1001/archopht.1980.01020040416003.
  • Jung W, et al. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans Biomed Eng. 2011;58(3):741–744.doi:10.1109/TBME.2010.2096816.
  • Sayegh SI, et al. Comparison of a MEMS-based handheld OCT scanner with a commercial desktop OCT system for retinal evaluation. Transl Vis Sci Technol. 2014. 3(4). 10.1167/tvst.3.3.10.
  • Pilat AV, et al. Assessment of the anterior segment of patients with primary congenital glaucoma using handheld optical coherence tomography. Eye (Lond). 2019;33(8):1232–1239.doi:10.1038/s41433-019-0369-3.
  • Pilat AV, et al. Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography. BMJ Open Ophthalmol. 2019;4(1):e000194.doi:10.1136/bmjophth-2018-000194.
  • Shah SD, et al. Reliability and recommended settings for pediatric circumpapillary retinal nerve fiber layer imaging using hand-held optical coherence tomography. Transl Vis Sci Technol. 2020;9(7):43.doi:10.1167/tvst.9.7.43.
  • Hahn P, et al. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic Surg Lasers Imaging. 2011;42(4):S85–94. Suppl. doi:10.3928/15428877-20110627-08.
  • Bashshur RL, Reardon TG, Shannon GW. Telemedicine: a new health care delivery system. Annu Rev Public Health. 2000;21(1):613–637. doi:10.1146/annurev.publhealth.21.1.613.
  • Hunt TL 2nd, Hooten WM. The effects of COVID-19 on telemedicine could outlive the virus. Mayo Clin Proc Innov Qual Outcomes. 2020;4(5):583–585. doi:10.1016/j.mayocpiqo.2020.07.001.
  • Lieneck C, et al. Rapid Telehealth Implementation during the COVID-19 Global Pandemic: a Rapid Review. Healthcare (Basel). 2020. 8(4). 10.3390/healthcare8040517.
  • Wong TY, Bandello F. Academic Ophthalmology during and after the COVID-19 Pandemic. Ophthalmology. 2020;127(8):e51–e52. doi:10.1016/j.ophtha.2020.04.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.