124
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Combined accelerated collagen crosslinking and sub-Bowman’s keratomileusis in high myopic eyes: a comparison between total ultraviolet energy dose

, , &
Pages 676-681 | Received 01 Mar 2021, Accepted 14 Apr 2022, Published online: 27 Apr 2022

References

  • Roberts C. Biomechanics of the cornea and wavefront-guided laser refractive surgery. J Refract Surg. 2002;18(5):S589–92. doi:10.3928/1081-597X-20020901-18.
  • Guirao A. Theoretical elastic response of the cornea to refractive surgery: risk factors for keratectasia. J Refract Surg. 2005;21(2):176–185. doi:10.3928/1081-597X-20050301-14.
  • Dawson DG, Randleman JB, Grossniklaus HE, et al. Corneal ectasia after excimer laser keratorefractive surgery: histopathology, ultrastructure, and pathophysiology. Ophthalmology. 2008;115(12):2181–91 e1. doi:10.1016/j.ophtha.2008.06.008.
  • Chan TC, Liu D, Yu M, Jhanji V. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Ophthalmology. 2015;122(4):687–692. doi:10.1016/j.ophtha.2014.10.011.
  • Wan KH, Chan TC, Yu M, Jhanji V. Longitudinal evaluation of posterior corneal changes after laser in situ keratomileusis in high myopia: a swept-source optical coherence tomography study. Clin Exp Ophthalmol. 2018;46(7):824–826. doi:10.1111/ceo.13178.
  • Farjo AA, Sugar A, Schallhorn SC, et al. Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120(3):e5–e20. doi:10.1016/j.ophtha.2012.08.013.
  • Wong RC, Yu M, Chan TC, et al. Longitudinal comparison of outcomes after sub-Bowman keratomileusis and laser in situ keratomileusis: randomized, double-masked study. Am J Ophthalmol. 2015;159(5):835–45 e3. doi:10.1016/j.ajo.2015.02.003.
  • Wittig-Silva C, Chan E, Islam FM, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014;121(4):812–821. doi:10.1016/j.ophtha.2013.10.028.
  • Wollensak G, Sporl E, Mazzotta C, et al. Interlamellar cohesion after corneal crosslinking using riboflavin and ultraviolet A light. Br J Ophthalmol. 2011;95(6):876–880. doi:10.1136/bjo.2010.190843.
  • Chan TC, Ng AL, Chan KK, et al. Combined application of prophylactic corneal cross-linking and laser in-situ keratomileusis - a review of literature. Acta Ophthalmol. 2017;95(7):660–664.
  • Tomita M. Combined laser in-situ keratomileusis and accelerated corneal cross-linking: an update. Curr Opin Ophthalmol. 2016;27(4):304–310. doi:10.1097/ICU.0000000000000281.
  • Kanellopoulos AJ, Asimellis G. Combined laser in situ keratomileusis and prophylactic high-fluence corneal collagen crosslinking for high myopia: two-year safety and efficacy. J Cataract Refract Surg. 2015;41(7):1426–1433. doi:10.1016/j.jcrs.2014.10.045.
  • Kohnen T, Lwowski C, Hemkeppler E, et al. Comparison of Femto-LASIK with combined accelerated cross-linking to Femto-LASIK in high myopic eyes: a prospective randomized trial. Am J Ophthalmol. 2020;211:42–55. doi:10.1016/j.ajo.2019.10.024.
  • Santhiago MR, Smadja D, Gomes BF, et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95 e1. doi:10.1016/j.ajo.2014.04.002.
  • Celik HU, Alagoz N, Yildirim Y, et al. Accelerated corneal crosslinking concurrent with laser in situ keratomileusis. J Cataract Refract Surg. 2012;38(8):1424–1431. doi:10.1016/j.jcrs.2012.03.034.
  • Tan J, Lytle GE, Marshall J. Consecutive laser in situ keratomileusis and accelerated corneal crosslinking in highly myopic patients: preliminary results. Eur J Ophthalmol. 2014. doi:10.5301/ejo.5000543.
  • Kanellopoulos AJ, Asimellis G. Epithelial remodeling after femtosecond laser-assisted high myopic LASIK: comparison of stand-alone with LASIK combined with prophylactic high-fluence cross-linking. Cornea. 2014;33(5):463–469. doi:10.1097/ICO.0000000000000087.
  • Tomita M, Yoshida Y, Yamamoto Y, et al. In vivo confocal laser microscopy of morphologic changes after simultaneous LASIK and accelerated collagen crosslinking for myopia: one-year results. J Cataract Refract Surg. 2014;40(6):981–990. doi:10.1016/j.jcrs.2013.10.044.
  • Seiler TG, Fischinger I, Koller T, et al. Superficial corneal crosslinking during laser in situ keratomileusis. J Cataract Refract Surg. 2015;41(10):2165–2170. doi:10.1016/j.jcrs.2015.03.020.
  • Ng AL, Kwok PS, Wu RT, et al. Comparison of the demarcation line on ASOCT after simultaneous LASIK and different protocols of accelerated collagen crosslinking: a bilateral eye randomized study. Cornea. 2017;36(1):74–77. doi:10.1097/ICO.0000000000001012.
  • Jordan C, Patel DV, Abeysekera N, McGhee CN. In vivo confocal microscopy analyses of corneal microstructural changes in a prospective study of collagen cross-linking in keratoconus. Ophthalmology. 2014;121(2):469–474. doi:10.1016/j.ophtha.2013.09.014.
  • Thorsrud A, Sandvik GF, Hagem AM, Drolsum L. Measuring the depth of crosslinking demarcation line in vivo: comparison of methods and devices. J Cataract Refract Surg. 2017;43(2):255–262. doi:10.1016/j.jcrs.2017.01.003.
  • Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci. 2012;53(4):2360–2367. doi:10.1167/iovs.11-9385.
  • Hammer A, Richoz O, Arba Mosquera S, et al. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–2884. doi:10.1167/iovs.13-13748.
  • Aldahlawi NH, Hayes S, O’Brart DP, et al. Enzymatic resistance of corneas crosslinked using riboflavin in conjunction with low energy, high energy, and pulsed UVA irradiation modes. Invest Ophthalmol Vis Sci. 2016;57(4):1547–1552. doi:10.1167/iovs.15-18769.
  • Peyman A, Nouralishahi A, Hafezi F, et al. Stromal demarcation line in pulsed versus continuous light accelerated corneal cross-linking for keratoconus. J Refract Surg. 2016;32(3):206–208. doi:10.3928/1081597X-20160204-03.
  • Richoz O, Hammer A, Tabibian D, et al. The biomechanical effect of corneal collagen cross-linking (CXL) with Riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6. doi:10.1167/tvst.2.7.6.
  • Wollensak G, Aurich H, Pham DT, Wirbelauer C. Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg. 2007;33(3):516–521. doi:10.1016/j.jcrs.2006.11.015.
  • Chan TC, Yu MC, Ng AL, et al. Short-term variance of refractive outcomes after simultaneous LASIK and high-fluence cross-linking in high myopic correction. J Refract Surg. 2016;32(10):664–670. doi:10.3928/1081597X-20160728-01.
  • Wan KH, Cky I, Kua WN, et al. Transepithelial corneal collagen cross-linking using iontophoresis versus the Dresden protocol in progressive keratoconus: a meta-analysis. Clin Exp Ophthalmol. 2021;49(3):228–241. doi:10.1111/ceo.13918.
  • Wisse RP, Gadiot S, Soeters N, et al. Higher-order aberrations 1 year after corneal collagen crosslinking for keratoconus and their independent effect on visual acuity. J Cataract Refract Surg. 2016;42(7):1046–1052. doi:10.1016/j.jcrs.2016.04.021.
  • Brar S, Gautam M, Sute SS, Ganesh S. Refractive surgery with simultaneous collagen cross-linking for borderline corneas - a review of different techniques, their protocols and clinical outcomes. Indian J Ophthalmol. 2020;68(12):2744–2756. doi:10.4103/ijo.IJO_1709_20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.