3,071
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent and Evolving Therapies in the Management of Endothelial Diseases

&
Pages 207-215 | Received 07 Mar 2022, Accepted 04 Apr 2022, Published online: 29 Dec 2022

REFERENCES

  • Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci. 1996;37:645–655.
  • Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43:2152–2159.
  • Joyce NC. Proliferative capacity of the corneal endothelium overall clinical outcomes of descemet membrane endothelial keratoplasty in 600 consecutive eyes: a large retrospective case series. Indian J Ophthalmol. 2003;68(6):1044–1053. doi:10.4103/ijo.IJO_1563_19. 2020.
  • Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci. 1984;25:312–322.
  • Gambato C, Longhin E, Catania AG, Lazzarini D, Parrozzani R, Midena E. Aging and corneal layers: an in vivo corneal confocal microscopy study. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):267–275. doi:10.1007/s00417-014-2812-2.
  • DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37:588–598.
  • Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp Eye Res. 2004;78:573–578.
  • Das AV, Mohamed A, Chaurasia S. Recent indications of endothelial keratoplasty at a tertiary eye care center in South India. Int Ophthalmol. May 2021;22:1–9.
  • Spinozzi D, Miron A, Bruinsma M, et al. New developments in corneal endothelial cell replacement. Acta Ophthalmol. 2021;99(7):712–729. doi:10.1111/aos.14722.
  • Paufique. Lamellar keratoplasty. In: Rycroft BW, ed. Corneal Grafts. England: Butterworth and Co., Ltd; 1955:132–133.
  • Braunstein RE, Airiani S, Chang MA, Odrich MG. Corneal edema resolution after ‘descemetorhexis’. J Cataract Refract Surg. 2003;29(7):1436–1439. doi:10.1016/S0886-3350(02)01984-3.
  • Patel DV, Phang KL, Grupcheva CN, et al. Surgical detachment of Descemet’s membrane and endothelium imaged over time by in vivo confocal microscopy. Clin Exp Ophthalmol. 2004;32(5):539–542. doi:10.1111/j.1442-9071.2004.00875.x.
  • Zvi T, Nadav B, Itamar K, Tova L. Inadvertent descemetorhexis. J Cataract Refract Surg. 2005;31(1):234–235. doi:10.1016/j.jcrs.2004.11.001.
  • Bleyen I, Saelens IEY, van Dooren Bt, van Rij G, van Dooren BTH. Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology. 2013;120(1):215. doi:10.1016/j.ophtha.2012.08.037.
  • Price FW FW, Price MO. Spontaneous corneal clearance despite graft detachment after descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2010;149(1):173–174. author reply 174–175. doi:10.1016/j.ajo.2009.09.003.
  • Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty. Cornea. 2016;35(10):1267–1273. doi:10.1097/ICO.0000000000000915.
  • Soh YQ, Peh G, George BL, et al. Predicative factors for corneal endothelial cell migration. Invest Ophthalmol Vis Sci. 2016;57(2):338–348. doi:10.1167/iovs.15-18300.
  • Okumura N, Matsumoto D, Fukui Y, et al. Feasibility of cell-based therapy combined with descemetorhexis for treating Fuchs endothelial corneal dystrophy in rabbit model. PLoS One. 2018;13(1):e0191306. doi:10.1371/journal.pone.0191306.
  • Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearing after Descemet’s stripping without endothelial replacement. Ophthalmology. 2012;119(2):256–260. doi:10.1016/j.ophtha.2011.07.032.
  • Davies E, Jurkunas U, Pineda R. Predictive factors for corneal clearance after descemetorhexis without endothelial keratoplasty. Cornea. 2018;37(2):137–140. 2nd. doi:10.1097/ICO.0000000000001427.
  • Macsai MS, Shiloach M. Use of topical Rho kinase inhibitors in the treatment of Fuchs dystrophy after descemet stripping only. Cornea. 2019;38(5):529–534. doi:10.1097/ICO.0000000000001883.
  • Artieda JA, Wells M, Devasahayam RN, Moloney G. 5-year outcomes of Descemet stripping only in Fuchs dystrophy.Cornea.2020 Aug 1;39(8):1048–1051.
  • Moloney G, Congote DG, Hirnschall N, et al. Descemet stripping only supplemented with topical ripasudil for fuchs endothelial dystrophy 12-month outcomes of the sydney eye hospital study Cornea 2021 Mar 1 43 320–326 10.1097/ICO.0000000000002437
  • Hirabayashi KE, Mark D, Lau J, Lin CC. Descemet stripping only for a chronic descemet detachment after cataract surgery. Cornea. 2020 Mar;39(3):379. doi:10.1097/ICO.0000000000002195.
  • Garcerant D, Hirnschall N, Toalster N, et al. Descemet’s stripping without endothelial keratoplasty. Curr Opin Ophthalmol. 2019;30(4):275–285. doi:10.1097/ICU.0000000000000579.
  • Artieda J, Wells, Wells M, et al. 5-Year outcomes of descemet stripping only in fuchs dystrophy. Cornea. 2020;39(8):1048–1051.
  • Hirabayashi KE, Mark D, Lau J, et al. Descemet stripping only for a chronic descemet detachment after cataract surgery. Cornea. 2020;39(3):379–381.
  • Huang MJ, Kane S, Dhaliwal DK. Descemetorhexis without endothelial keratoplasty versus DMEK for treatment of fuchs endothelial corneal dystrophy. Cornea. 2018;37(12):1479–1483. doi:10.1097/ICO.0000000000001742.
  • Moloney G, Petsoglou C, Ball M, et al. Descemetorhexis Without Grafting for Fuchs Endothelial Dystrophy—Supplementation With Topical Ripasudil. Cornea. 2017;36(6):642–648. doi:10.1097/ICO.0000000000001209.
  • Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular Cell Biology. 2003;4(6):539–542. doi:10.1038/nrm1128.
  • Okumura N, Ueno M, Koizumi N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. investigative Opthalmology & Visual Science. 2009;50(8):3680–3687. doi:10.1167/iovs.08-2634.
  • Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. the American Journal of Pathology. 2012;181(1):268–277. doi:10.1016/j.ajpath.2012.03.033.
  • Okumura N, Kay EP, Nakahara M, Hamuro J, Kinoshita S, Koizumi N. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PloS One. 2013;8(2):e58000. doi:10.1371/journal.pone.0058000.
  • Okumura N, Nakano S, Kay EP, et al. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2014;55(1):318–329. doi:10.1167/iovs.13-12225.
  • Okumura N, Sakamoto Y, Fujii K, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016a;6(1):26113. doi:10.1038/srep26113.
  • Okumura N, Fujii K, Kagami T, et al. Activation of the Rho/Rho kinase signaling pathway is involved in cell death of corneal endothelium. Invest Ophthalmol Vis Sci. 2016b;57(15):6843–6851. doi:10.1167/iovs.16-20123.
  • Kinoshita S, Koizumi N, Ueno M, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003. doi:10.1056/NEJMoa1712770.
  • Haydari MN, Perron MC, Laprise S, et al. A short-term in vivo experimental model for fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2012;53(10):63436354. doi:10.1167/iovs.12-9708.
  • Zaniolo K, Bostan C, Rochette Drouin O, et al. Culture of human corneal endothelial cells isolated from corneas with Fuchs endothelial corneal dystrophy. Exp Eye Res. 2012;94(1):22–31. doi:10.1016/j.exer.2011.10.018.
  • Schlötzer-Schrehardt U, Zenkel M, Strunz M, et al. Potential functional restoration of corneal endothelial cells in fuchs endothelial corneal dystrophy by ROCK Inhibitor (Ripasudil). Am J Ophthalmol. 2021;224:185–199. doi:10.1016/j.ajo.2020.12.006.
  • Price MO, Price FW Jr. Randomized, double-masked, pilot study of netarsudil 0.02% ophthalmic solution for treatment of corneal edema in fuchs dystrophy. Am J Ophthalmol. 2021;227:100–105. doi:10.1016/j.ajo.2021.03.006.
  • Davies E. Case series: novel utilization of rho-kinase inhibitor for the treatment of corneal edema. Cornea. 2021;40(1):116–120. doi:10.1097/ICO.0000000000002421.
  • Roy O, Leclerc VB, Bourget JM, Theriault M, Proulx S. Understanding the process of corneal endothelial morphological change invitro. InvestOphthalmolVisSci. 2015;562):1228–1237.
  • Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells. In vitro cellular & developmental biology : journal of the Tissue Culture Association. 1989;25(11):1065–1072. doi:10.1007/BF02624143.
  • Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. In vitro cellular & developmental biology : journal of the Tissue Culture Association. 2004;45(6):1743–1751. doi:10.1167/iovs.03-0814.
  • Navaratnam J, Utheim TP, Rajasekhar VK, Shahdadfar A. Substrates for expansion of corneal endothelial cells towards bioengineering of human corneal endothelium. J Funct Biomater. 2015;6(3):917–945. doi:10.3390/jfb6030917.
  • Shao C, Fu Y, Lu W, Fan X. Bone marrow-derived endothelial progenitor cells: a promising therapeutic alternative for corneal endothelial dysfunction. Cells Tissues Organs. 2011;193(4):253–263. doi:10.1159/000319797.
  • Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012;18:547–564.
  • Dai Y, Guo Y, Wang C, et al. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS One. 2014;9(10):e109856. doi:10.1371/journal.pone.0109856.
  • Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell–like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340–1354. doi:10.1089/scd.2013.0510.
  • Chen P, Chen JZ, Shao CY, et al. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Exp Ther Med. 2015;9:351–360.
  • Zavala J, Lopez Jaime GR, Rodriguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013;27:579–588.
  • Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea. 2001;20:731–737.
  • Peh GS, Chng Z, Ang HP, et al. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant. 2015;24:287–304.
  • Spinozzi D, Miron A, Bruinsma M, et al. Improving the success rate of human corneal endothelial cell cultures from single donor corneas with stabilization medium. Cell Tissue Bank. 2018;19:9–17.
  • Roy O, Leclerc VB, Bourget JM, Theriault M, Proulx S. Understanding the process of corneal endothelial morphological change invitro. InvestOphthalmolVisSc. 2015;2(56):1228–1237.
  • Choi JS, Williams JK, Greven M, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials. 2010;31:6738–6745.
  • Lu X, Chen D, Liu Z, et al. Enhanced survival in vitro of human corneal endothelial cells using mouse embryonic stem cell conditioned medium. Mol Vis. 2010;16:611–622.
  • Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells. In vitro cellular & developmental biology : journal of the Tissue Culture Association. 1989;25:1065–1072.
  • Choi JS, Kim EY, Kim MJ, et al. Factors affecting successful isolation of human corneal endothelial cells for clinical use. Cell Transplant. 2014;23:845–854.
  • Joyce NC & Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine. Cornea. 2004;23:S8–S19 .
  • Miyazaki T, Futaki S, Suemori H, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 2012;3:1236.
  • Nagase T, Ueno M, Matsumura M, et al. Pericellular matrix of deciduaderived mesenchymal cells: a potent human-derived substrate for the maintenance culture of human ES cells. Dev Dyn. 2009;238:1118–1130.
  • Arnalich-Montiel F, Moratilla A, FuentesJulian S, et al. Treatment of corneal endothelial damage in a rabbit model with a bioengineered graft using human decellularized corneal lamina and cultured human corneal endothelium. PLoS One. 2019;14:e0225480.
  • Peh GSL, Ang HP, Lwin CN, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7:14149.
  • Spinozzi D, Miron A, Lie JT, et al. In Vitro Evaluation and Transplantation of human corneal endothelial cells cultured on biocompatible carriers. Cell Transplant. 2020;29:963689720923577.
  • Teichmann J, Valtink M, Nitschke M, et al. Tissue engineering of the corneal endothelium: a review of carrier materials. J Funct Biomater. 2013;4:178–208.
  • Mimura T, Yamagami S, Usui T, Seiichi HN, Amano S. Necessary prone position time for human corneal endothelial precursor transplantation in a rabbit endothelial deficiency model. Curr Eye Res. 2007;32:617–623.
  • Mimura T, Yamagami S, Yokoo S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004b;45:2992–2997.
  • Mimura T, Yamagami S, Yokoo S, Usui T, Amano S. Selective isolation of young cells from human corneal endothelium by the sphere-forming assay. Tissue Eng Part C Methods. 2010;16:803–812.
  • Numa K, Imai K, Ueno M, et al. Five-Year follow-up of first 11 patients undergoing injection of cultured corneal endothelial cells for corneal endothelial failure.Ophthalmology.2021 Apr 1;128(4):504–514.
  • Xia X, Atkins M, Dalal R, et al. Magnetic human corneal endothelial cell transplant: delivery, retention, and short-term efficacy. Invest Ophthalmol Vis Sci. 2019;60:2438–2448.
  • Ong HS, Peh G, Neo DJH, et al. A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy. Cells. 2020;9:1428.
  • Parikumar P, Haraguchi K, Senthilkumar R, Abraham SJ. Human corneal endothelial cell transplantation using nanocomposite gel sheet in bullous keratopathy. Am J Stem Cells. 2018;7:18–24.
  • Price MO, Mehta JS, Jurkunas UV, Price FW Jr, et al. Corneal endothelial dysfunction: evolving understanding and treatment options. Prog Retin Eye Res. 2021;82:100904.
  • McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PloS One. 2015;10:e0145266.
  • Lovatt M, Yam GH, Peh GS, Colman A, Dunn NR, Mehta JS. Directed differentiation of periocular mesenchyme from human embryonic stem cells. Differentiation. 2017;99:62–69.
  • Song Q, Yuan S, An Q, et al. Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: a transcriptomic analysis. Experimental eye research. 2016;151:107–114.
  • Raviola G. Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci. 1982;22:45–56.
  • Yam GH-F, Seah X, Yusoff NZBM, et al. Characterization of human transition zone reveals a putative progenitor-enriched niche of corneal endothelium. Cells. 12 Oct. 2019;8(10):1244.
  • Jirka S, Aartsma-Rus A. An update on RNA-targeting therapies for neuromuscular disorders. Current opinion in neurology. 2015;28(5):515–521.
  • Hawkins PG, Santoso S, Adams C, Anest V, Morris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res. 2009;37:2984–2995.
  • Auffarth GU, Son HS, Koch M, et al. Implantation of an artificial endothelial layer for treatment of chronic corneal edema.Cornea.2021 Dec 31;40(12):1633–1638.