1,610
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in indium metallurgy: A review

, & ORCID Icon

References

  • Adhikari, B. B., Gurung, M., Kawakita, H., and Ohto, K., 2012, “Solid phase extraction, preconcentration and separation of indium with methylene crosslinked calix[4]- and calix[6]arene carboxylic acid resins.” Chemical Engineering Science, 78. pp. 144–154.
  • Ahmed, A., and Adam, F., 2007, “Indium incorporated silica from rice husk and its catalytic activity.” Microporous and Mesoporous Materials, 103. pp. 284–295.
  • Akcil, A., and Agcasulu, I., 2015, “Critical Metal: indium and its Recovery from Waste LCD Monitor.” Recycling Industry, May, pp. 54–59 (in Turkish).
  • Alfantazi, A. M., and Moskalyk, R. R., 2003, “Processing of indium: a review.” Minerals Engineering, 16. pp. 687–694.
  • Argenta, A. B., Reis, C. M., Mello, G. P., Dotto, G. L., Tanabe, E. H., and Bertuol, D. A., 2017, “Supercritical CO2extraction of indium present in liquid crystal displays from discarded cell phones using organic acids.” Journal of Supercritical Fluids, 120. pp. 95–101.
  • Austin, C. B., and Dopson, M., 2007, “Life in cid: pH homeostasis in acidophiles.” Trends in Microbiology, 15. pp. 165–171.
  • Boundy, T., Boyton, M., and Taylor, P., 2017, “Attrition scrubbing for recovery of indium from waste liquid crystal display glass via selective comminution.” Journal of Cleaner Production, 154. pp. 436–444.
  • Chang, J., Zhang, L., Dud, Y., Peng, J., Hu, G., Chen, J., and Srinivasakannan, C., 2016, “Separation of indium from iron in a rotating packed bed contactor using Di-2-ethylhexylphosphoric acid.” Separation and Purification Technology, 164. pp. 12–18.
  • Chen, W. S., Wang, Y. C., and Chiu, K. L., 2017, “The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) targets.” Journal of Environmental Chemical Engineering, 5. pp. 381–390.
  • Crundwell, F. K., 1998, “Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution.” AIChE Journal, 34. pp. 1128–1134.
  • Dodbiba, G., Nagai, H., Wang, L. P., Okaya, K., and Fujita, T., 2012, “Leaching of indium from obsolete liquid crystal displays: comparing grinding with electrical disintegration in context of LCA.” Waste Management, 32. pp. 1937–1944.
  • Ferella, F., Belardi, G., Marsilii, A., Michelis, I. D., and Vegliò, F., 2017, “Separation and recovery of glass, plastic and indium from spent LCD panels.” Waste Management, 60. pp. 569–581.
  • Filippou, D., and Demopoulos, G. P., 1997, “Steady-state modeling of zinc-ferrite hot-acid leaching.” Metallurgical and Materials Transactions B, 28. pp. 701–711.
  • Fontana, D., Forte, F., Carolis, R. D., and Grosso, M., 2015, “Materials recovery from waste liquid crystal displays: A focus on indium.” Waste Management, 45. pp. 325–333.
  • Gelhaar, N., Schopf, S., and Schlömann, M., 2015, “Indium extraction from Reiche Zeche sphalerite and community analysis of acidic mine water.” Advanced Materials Research, 1130. pp. 392–395.
  • Ghoreishi, S. M., Ansari, K., and Ghaziaskar, H. S., 2012, “Supercritical extraction of toxic heavy metals from aqueous waste via Cyanex 301 as chelating agent.” Journal of Supercritical Fluids, 72. pp. 288–297.
  • Graedel, T. E., Allwood, J., Birat, J. P., Buchert, M., Hagelueken, C., Reck, B. K., Sibley, S. F., and Sonnemann, G., 2011, “What do we know about metal recycling rates?” Journal of Industrial Ecology, 15. pp. 355–366.
  • Grimes, S. M., Yasri, N. G., and Chaudhary, A. J., 2017, “Recovery of critical metals from dilute leach solutions – separation of indium from tin and lead.” Inorganica Chimica Acta, 461. pp. 161–166.
  • Grützke, M., Kraft, V., Weber, W., Wendt, C., Friesen, A., Klamor, S., Winter, M., and Nowak, S., 2014, “Supercritical carbon dioxide extraction of lithium-ion battery electrolytes.” Journal of Supercritical Fluids, 94. pp. 216–222.
  • Guocai, W. U., Mingdan, Z., Guanglong, F., and Yuna, Z., 2007, “Recovering indium with sulfating roasting from copper-smelting ash.” Rare Metals, 26. pp. 488–491.
  • He, Y., Ma, E., and Xu, Z., 2014, “Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction.” Journal of Hazardous Materials, 268. pp. 185–190.
  • Hsieh, S. J., Chen, C. C., and Say, W. C., 2009, “Process for recovery of indium from ITO scraps and metallurgic microstructures.” Materials Science and Engineering B, 158. pp. 82–87. http://www.rsc.org/periodic-table/element/49/indium
  • Ilyas, S., Chi, R., and Lee, J.-C., 2013, “Fungal bioleaching of metals from mine tailing.” Mineral Processing and Extractive Metallurgy Review, 34. pp. 185–194.
  • Jancovik, B., 2015, “Isothermal thermo-analytical study and decomposition kinetics of non-activated and mechanically activated indium tin oxide (ITO) scrap powders treated by alkaline solution.” Transactions of Nonferrous Metal Society of China, 25. pp. 1657−1676.
  • Jiang, J., Liang, D., and Zhong, Q., 2011, “Precipitation of indium using sodium tripolyphosphate.” Hydrometallurgy, 106. pp. 165–169.
  • Jin, G. Q., Li, W. D., and Xia, K., 2013, “Disassembly matrix for liquid crystal displays televisions.” Procedia CIRP, 11. pp. 357–362.
  • Kang, K. N., Lee, J. Y., and Kim, J. Y., 2011, “Recovery of indium from etching waste by solvent extraction and electrolytic refining.” Hydrometallurgy, 110. pp. 120–127.
  • Kano, J., Kobayashi, E., Tongamp, W., Miyagi, S., and Saito, F., 2009, “Non-thermal reduction of indium oxide and indium tin oxide bymechanochemical method.” Journal of Alloys and Compounds, 484. pp. 422–425.
  • Kato, T., Igarashi, S., Ishiwatari, Y., Furukawa, M., and Yamaguchi, H., 2013, “Separation and concentration of indium from a liquid crystal display via homogeneous liquid–liquid extraction.” Hydrometallurgy, 137. pp. 148–155.
  • Kim, D. J., Pradhan, D., Ahn, J. G., and Lee, S. W., 2010, “Enhancement of metals dissolution from spent refinery catalysts using adapted bacteria culture – Effects of pH and Fe(II).” Hydrometallurgy, 103. pp. 136–143.
  • Kim, D. J., Pradhan, D., Chaudhury, G. R., Ahn, J. G., and Lee, S. W., 2009, “Bioleaching of complex sulfides concentrate and correlation of leaching parameters using multivariate data analysis technique.” Materials Transactions, 50. pp. 2318–2322.
  • Koleini, S. M. J., Mehrpouya, H., Saberyan, K., and Abdolahi, M., 2010, “Extraction of indium from zinc plant residues.” Minerals Engineering, 23. pp. 51–53.
  • Kulkarni, A. K., Daneshvarhosseini, S., and Yoshida, H., 2011, “Effective recovery of pure aluminum from waste composite laminates by sub- and super- critical water.” Journal of Supercritical Fluids, 55. pp. 992–997.
  • Li, C., Wei, C., Xu, H., Deng, Z., Liao, J., Li, X., and Li, M., 2010a, “Kinetics of indium dissolution from sphalerite concentrate in pressure acid leaching.” Hydrometallurgy, 105. pp. 172–175.
  • Li, C., Wei, C., Xu, H. S., Li, M., Li, X., Deng, Z., and Fan, G., 2010b, “Oxidative pressure leaching of sphalerite concentrate with high indium and iron content in sulfuric acid medium.” Hydrometallurgy, 102. pp. 91–94.
  • Li, J., Gao, S., Duan, H., and Liu, L., 2009, “Recovery of valuable materials from waste liquid crystal display panel.” Waste Management, 29. pp. 2033–2039.
  • Li, R., Yuan, T., Fan, W., Qiu, Z., Su, W., and Zhong, N., 2014, “Recovery of indium by acid leaching waste ITO target based on neural network.” Transactions of Nonferrous Metal Society of China, 24. pp. 257–262.
  • Li, X., Deng, Z., Li, C., Wei, C., Li, M., Fan, G., and Rong, H., 2015a, “Direct solvent extraction of indium from a zinc residue reductive leachsolution by D2EHPA.” Hydrometallurgy, 156. pp. 1–5.
  • Li, X., Wei, C., Deng, Z., Li, C., Fan, G., Rong, H., and Zhang, F., 2015b, “Extraction and separation of indium and copper from zinc residue leach liquor by solvent extraction.” Separation and Purification Technology, 156. pp. 348–355.
  • Li, Y., Liu, Z., Li, Q., Liu, Z., and Zeng, L., 2011, “Recovery of indium from used indium–tin oxide (ITO) targets.” Hydrometallurgy, 105. pp. 207–212.
  • Ma, E., and Xu, Z., 2013, “Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.” Journal of Hazardous Materials, 263. pp. 610–617.
  • Martin, M., Janneck, E., Kermer, R., Patzig, A., and Reichel, S., 2015, “Recovery of indium from sphalerite ore and flotation tailings by bioleaching and subsequent precipitation processes.” Minerals Engineering, 75. pp. 94–99.
  • Jasinski, S.M., 1992, “Indium: U.S. Bureau of Mines Mineral Commodity Summaries 1992”, 86–87.
  • Nigel, J. C., Ciobanu, C. L., and Williams, T., 2011, “The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing.” Hydrometallurgy, 108. pp. 226–228.
  • Niu, Z., Huang, Q., Wang, J., Yang, Y., Xin, B., and Chen, S., 2015, “Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%.” Journal of Hazardous Materials, 298. pp. 70–177.
  • Nusen, S., Chairuangsri, T., Zhu, Z., and Cheng, C. Y., 2016, “Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid.” Hydrometallurgy, 160. pp. 137–146.
  • Panda, S., Akcil, A., Mishra, A., and Erust, C., 2017, “Synergistic effect of biogenic Fe3+ coupled to S° oxidation on simultaneous bioleaching of Cu, Co, Zn and As from hazardous Pyrite Ash Waste.” Journal of Hazardous Materials, 325. pp. 59–70.
  • Panda, S., Akcil, A., Pradhan, N., and Deveci, H., 2015, “Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap leaching technology.” Bioresource Technology, 196. pp. 697–706.
  • Panda, S., Pradhan, N., Mohapatra, U. B., Panda, S. K., Rath, S. S., Nayak, B. D., Sukla, L. B., and Mishra, B. K., 2013, “Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage.” Frontiers of Environmental Science and Engineering, 7. pp. 281–293.
  • Pavia, A., 2001, “Recovery of indium from aqueous solutions by solvent extraction.” Separation Science and Technology, 36. pp. 1395–1419.
  • Pradhan, D., Kim, D. J., Ahn, J. G., Chaudhury, G. R., and Lee, S. W., 2010a, “Kinetics and statistical behavior of metals dissolution from spent petroleum catalyst using acidophilic iron oxidizing bacteria.” Journal of Industrial and Engineering Chemistry, 16. pp. 866–871.
  • Pradhan, D., Kim, D. J., Chaudhury, G. R., and Lee, S. W., 2010b, “Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.” Journal of Environmental Science and Health, Part A, 45. pp. 476–482.
  • Pradhan, D., Mishra, D., Kim, D. J., Ahn, J. G., Chaudhury, G. R., and Lee, S. W., 2010c, “Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.” Journal of Hazardous Materials, 175. pp. 267–273.
  • Pradhan, D., Mishra, D., Kim, D. J., Chaudhury, G. R., and Lee, S. W., 2009, “Dissolution kinetics of spent petroleum catalyst using two different acidophiles.” Hydrometallurgy, 99. pp. 157–162.
  • Pradhan, D., Patra, A. K., Kim, D. J., Chung, H. S., and Lee, S. W., 2013, “A novel sequential process of bioleaching and chemical leaching for dissolving Ni, V, and Mo from spent petroleum refinery catalyst.” Hydrometallurgy, 131-132. pp. 114–119.
  • Pradhan, D., Sukla, L. B., Sawyer, M., and Rahman, P. K. S. M., 2017, “Recent bioreduction of hexavalent chromium in wastewater treatment: A review.” Journal of Industrial and Engineering Chemistry, 55. pp. 1–20.
  • Rajaram, S. M., Cai, G., Hoeil, C., Lokhande, C. D., and Han, S. H., 2009, “Electrochromism in indium-tin-oxide films for laser-writing application.” Physica E: Low-Dimensional Systems and Nanostructures, 41. pp. 1263–1266.
  • Rocchetti, L., Amato, A., and Beolchini, F., 2016, “Recovery of indium from liquid crystal displays.” Journal of Cleaner Production, 116. pp. 299–305.
  • Rocchetti, L., Amato, A., Fonti, V., Ubaldini, S., Michelis, I. D., Kopacek, B., Vegliò, F., and Beolchini, F., 2015, “Cross-current leaching of indium from end-of-life LCD panels.” Waste Management, 42. pp. 180–187.
  • Rotter, V., Chancerel, P., and Ueberschaar, M., 2013, “Recycling-oriented product characterization for electric and electronic equipment as a tool to enable recycling of critical metals.” In: Kvithyld, A., et al. (eds), REWAS: Springer, Cham, pp. 192–201.
  • Ruan, J., Guo, Y., and Qiao, Q., 2012, “Recovery of indium from scrap TFT-LCDs by solventextraction.” Procedia Environmental Sciences, 16. pp. 545–551.
  • Ryan, A., O’ Donoghue, L., and Lewis, H., 2011, “Characterising components of liquid crystal displays to facilitatedis assembly.” Journal of Cleaner Production, 19. pp. 1066–1071.
  • Sand, W., Gehrke, T., Hallmann, R., and Schippers, A., 1998, “Towards A novel bioleaching mechanism.” Mineral Processing and Extractive Metallurgy Review, 19. pp. 97–106.
  • Sand, W., Gehrke, T., Jozsa, P. G., and Schippers, A., 2001, “Biochemistry of bacterial leaching—direct vs. indirect bioleaching.” Hydrometallurgy, 59. pp. 159–175.
  • Sawai, H., Rahman, I. M. M., Tsukagoshi, Y., Wakabayashi, T., Maki, T., Mizutani, S., and Hasegawa, H., 2015, “Selective recovery of indium from lead-smelting dust.” Chemical Engineering Journal, 277. pp. 219–228.
  • Schaeffer, N., Grimes, S. M., and Cheeseman, C. R., 2017, “Use of extraction chromatography in the recycling of critical metals from thin film leach solutions.” InorganicaChimicaActa, 457. pp. 53–58.
  • Schippers, A., and Sand, W., 1999, “Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur.” Applied Microbiologic Biotechnology, 65. pp. 319–321.
  • Sheats, J. R., Antoniadis, H., Hueschen, M., Leonard, J., Miller, R., Moon, R., Roitman, D., and Stocking, A., 1996, “Organic electroluminescent devices.” Science, 273. pp. 884–888.
  • Shi-Qing, L., Mo-Tang, T., Sheng-Hai, Y., Chao-Bo, T., and Yong-Ming, C., 2006, “Extraction of indium from indium-zinc concentrates.” Transactions of Nonferrous Metal Society of China, 16. pp. 1448–1454.
  • Silveira, A., Fuchs, M., Pinheiro, D., Tanabe, E., and Bertuol, D., 2015, “Recovery of indium from LCD screens of discarded cell phones.” Waste Management, 45. pp. 334–342.
  • Swain, B., Mishra, C., Hong, H. S., and Cho, S. S., 2016, “Beneficiation and recovery of indium from liquid-crystal-display glass by hydrometallurgy.” Waste Management, 57. pp. 207–214.
  • Takahashi, K., Sasaki, A., Dodbiba, G., Sadaki, J., Sato, N., and Fujita, T., 2009, “Recovering indium from the liquid crystal display of discarded cellular phones by means ofchloride-induced vaporization at relatively low temperature.” Metallurgical and Materials Transaction A, 40A. pp. 891–900.
  • Tang, C. W., and Slyke, S. A. V., 1987, “Organic Luminiscent diodes.” Applications Physical Letters, 51. pp. 913–915.
  • Tavakoli, O., and Yoshida, H., 2005, “Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments.” Environmental Science and Technology, 39. pp. 2357–2363.
  • Tavakoli, O., and Yoshida, H., 2006, “Conversion of scallopviscera wastes to valuable compounds using sub-critical water.” Green Chemistry, 8. pp. 100–106.
  • Tolcin, A., 2016, Mineral Commodity Summaries: indium, Reston, Virginia: USGS.
  • U.S. Geological Survey, 2017, Mineral commodity summaries 2017: U.S. Geological Survey, 202 p., https://doi.org/10.3133/70180197
  • Vasiliki, S., Hahladakis, J. N., and Gidarakos, E., 2015, “Leaching capacity of metals–metalloids and recovery of valuable materials from waste LCDs.” Waste Management, 45. pp. 314–324.
  • Virolainen, S., Ibana, D., and Paatero, E., 2011, “Recovery of indium from indium tin oxide by solvent extraction.” Hydrometallurgy, 107. pp. 56–61.
  • Werner, T. T., Mudd, G. M., and Jowitt, S. M., 2017, “The world’s by-product and critical metal resources part III: A global assessment of indium.” Ore Geology Reviews, 86. pp. 939–956.
  • White, S. J. O., Hussain, F. A., Hemond, H. F., Sacco, S. A., Shine, J. P., Runkel, R. L., Day, K. W., and Kimball, B. A., 2017, “The precipitation of indium at elevated pH in a stream influenced by acid mine drainage.” Science of the Total Environment, 574. pp. 1484–1491.
  • Xuan, L. H., Yan-Juan, Z., Quan-Lun, Q., Jian, Y., and Yan-Song, W., 2010, “Indium recovery from zinc oxide flue dust by oxidative pressure leaching.” Transactions of Nonferrous Metal Society of China, 20. pp. 141–145.
  • Yang, J., Retegan, T., and Ekberg, C., 2013, “Indium recovery from discarded LCD panel glass by solvent extraction.” Hydrometallurgy, 137. pp. 68–77.
  • Yang, J., Retegan, T., Steenari, B. M., and Ekberg, C., 2016, “Recovery of indium and yttrium from Flat Panel Display waste using solvent extraction.” Separation and Purification Technology, 166. pp. 117–124.
  • Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., and Asghari, F. S., 2015, “Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water.” Journal of Supercritical Fluids, 104. pp. 40–48.
  • Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., and Feridoun, S. A., 2014, “Recovery of indium from TFT and CF glasses in LCD panel wastes using sub-critical water.” Solar Energy Materials & Solar Cells, 125. pp. 14–19.
  • Yoshida, H., Terashima, M., and Takahashi, Y., 1999, “Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis.” Biotechnology Program, 15. pp. 1090–1094.
  • Zhang, F., Wei, C., Deng, Z., Li, X., Li, C., and Li, M., 2016a, “Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant.” Hydrometallurgy, 161. pp. 102–106.
  • Zhang, F., Wei, C., Deng, Z. G., Li, C. X., Li, X. B., and Li, M. T., 2016b, “Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media.” Transactions Nonferrous Met Social China, 26. pp. 2495−2501.
  • Zhang, K., Li, B., Wu, Y., Wang, W., Li, R., Zhang, Y., and Zuo, T., 2017a, “Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave.” Waste Management, 64. pp. 236–243.
  • Zhang, K., Wu, Y., Wang, W., Li, B., Zhang, Y., and Zuo, T., 2015, “Recycling indium from waste LCDs: A review.” Resources Conservation Recycling, 104. pp. 276–290.
  • Zhang, L., and Xu, Z., 2016, “A review of current progress of recycling technologies for metals from waste electrical and electronic equipment.” Journal of Cleaner Production, 127. pp. 19–36.
  • Zhang, Y., Jin, B., Ma, B., and Feng, X., 2017b, “Separation of indium from lead smelting hazardous dustvia leaching and solvent extraction.” Journal of Environmental Chemical Engineering, 5. pp. 2182–2188.
  • Zhang, Y., Li, X., Pan, L., Liang, X., and Li, X., 2010a, “Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite.” Hydrometallurgy, 100. pp. 172–176.
  • Zhang, Y., Li, X., Pan, L., Wei, Y., and Liang, X., 2010b, “Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite.” Hydrometallurgy, 102. pp. 95–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.