326
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Air Dispersion and Bubble Characteristics in a Downflow Flotation Column

, , , , &

References

  • Akita, K., and Yoshida, F., 1973, “Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties.” Industrial & Engineering Chemistry Process Design and Development, 12. pp. 76–80. doi:10.1021/i260045a015
  • Ansari, M., Turney, D. E., Yakobov, R., Kalaga, D. V., Kleinbart, S., Banerjee, S., and Joshi, J. B., 2018, “Chemical hydrodynamics of a downward microbubble flow for intensification of gas‐fed bioreactors.” AIChE Journal, 64. pp. 1399–1411. doi:10.1002/aic.16002
  • Azgomi, F., Gomez, C. O., and Finch, J. A., 2007, “Correspondence of gas holdup and bubble size in presence of different frothers.” International Journal of Mineral Processing, 83. pp. 1–11. doi:10.1016/j.minpro.2007.03.002
  • Bournival, G., Ata, S., and Jameson, G. J., 2017, “Bubble and froth stabilizing agents in froth flotation.” Mineral Processing and Extractive Metallurgy Review, 38. pp. 366–387. doi:10.1080/08827508.2017.1323747
  • Cho, Y.-S., and Laskowski, J. S., 2002, “Effect of flotation frothers on bubble size and foam stability.” International Journal of Mineral Processing, 64. pp. 69–80. doi:10.1016/S0301-7516(01)00064-3
  • Corona-Arroyo, M. A., López-Valdivieso, A., Laskowski, J. S., and Encinas-Oropesa, A., 2015, “Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column.” Minerals Engineering, 81. pp. 109–115. doi:10.1016/j.mineng.2015.07.023
  • Elmahdy, A. M., and Finch, J. A., 2013, “Effect of frother blends on hydrodynamic properties.” International Journal of Mineral Processing, 123. pp. 60–63. doi:10.1016/j.minpro.2013.04.019
  • Evans, G. M., Jameson, G. J., and Atkinson, B. W., 1992, “Prediction of the bubble size generated by a plunging liquid jet bubble column.” Chemical Engineering Science, 47. pp. 3265–3272. doi:10.1016/0009-2509(92)85034-9
  • Finch, J. A., Yianatos, J., and Dobby, G., 1989, “Column froths.” Mineral Procesing and Extractive Metallurgy Review, 5. pp. 281–305. doi:10.1080/08827508908952653
  • Girgin, E. H., Do, S., Gomez, C. O., and Finch, J. A., 2006, “Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell.” Minerals Engineering, 19. pp. 201–203. doi:10.1016/j.mineng.2005.09.002
  • Grau, R. A., and Laskowski, J. S., 2006, “Role of frothers in bubble generation and coalescence in a mechanical flotation cell.” The Canadian Journal of Chemical Engineering, 84. pp. 170–182. doi:10.1002/cjce.5450840204
  • Hernandez-Alvarado, F., Kalaga, D. V., Turney, D., Banerjee, S., Joshi, J. B., and Kawaji, M., 2017, “Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion.” Chemical Engineering Science, 168. pp. 403–413. doi:10.1016/j.ces.2017.05.006
  • Hernandez-Alvarado, F., Kleinbart, S., Kalaga, D. V., Banerjee, S., Joshi, J. B., and Kawaji, M., 2018, “Comparison of void fraction measurements using different techniques in two-phase flow bubble column reactors.” International Journal of Multiphase Flow, 102. pp. 119–129. doi:10.1016/j.ijmultiphaseflow.2018.02.002
  • Jeldres, R. I., Forbes, L., and Cisternas, L. A., 2016, “Effect of seawater on sulfide ore flotation: a review.” Mineral Processing and Extractive Metallurgy Review, 37. pp. 369–384. doi:10.1080/08827508.2016.1218871
  • Kowalczuk, P. B., 2013, “Determination of critical coalescence concentration and bubble size for surfactants used as flotation frothers.” Industrial & Engineering Chemistry Research, 52. pp. 11752–11757. doi:10.1021/ie401263k
  • Kursun, H., and Ulusoy, U., 2012, “Zinc recovery from lead–zinc–copper complex ores by using column flotation.” Mineral Processing and Extractive Metallurgy Review, 33. pp. 327–338. doi:10.1080/08827508.2011.601479
  • Laplante, A. R., Kaya, M., and Smith, H. W., 1989, “The effect of froth on flotation kinetics-A mass transfer approach.” Mineral Procesing and Extractive Metallurgy Review, 5. pp. 147–168. doi:10.1080/08827508908952648
  • Laskowski, J. S., Cho, Y. S., and Ding, K., 2003, “Effect of frothers on bubble size and foam stability in potash ore flotation systems.” The Canadian Journal of Chemical Engineering, 81. pp. 63–69. doi:10.1002/cjce.5450810107
  • Lecrivain, G., Petrucci, G., Rudolph, M., Hampel, U., and Yamamoto, R., 2015, “Attachment of solid elongated particles on the surface of a stationary gas bubble.” International Journal of Multiphase Flow, 71. pp. 83–93. doi:10.1016/j.ijmultiphaseflow.2015.01.002
  • Molaei, N., Razavi, H., and Chehreh Chelgani, S., 2018, “Designing different beneficiation techniques by Taguchi method for upgrading Mehdi-Abad white barite ore.” Mineral Processing and Extractive Metallurgy Review, 39. pp. 198–201. doi:10.1080/08827508.2017.1399889
  • Moys, M. H., 1989, “Mass transport in flotation froths.” Mineral Procesing and Extractive Metallurgy Review, 5. pp. 203–228. doi:10.1080/08827508908952650
  • Mutharasu, L. C., Kalaga, D. V., Sathe, M., Turney, D. E., Griffin, D., Li, X., Kawaji, M., Nandakumar, K., and Joshi, J. B., 2018, “Experimental study and CFD simulation of the multiphase flow conditions encountered in a novel down-flow bubble colum.” Chemical Engineering Journal, 350. pp. 507–522. doi:10.1016/j.cej.2018.04.211
  • Nassif, M., Finch, J. A., and Waters, K. E., 2013, “Developing critical coalescence concentration curves for industrial process waters using dilution.” Minerals Engineering, 50. pp. 64–68. doi:10.1016/j.mineng.2013.06.011
  • Nesset, J. E., Finch, J. A., and Gomez, C. O., 2007. Operating variables affecting the bubble size in forced-air mechanical flotation machines, in: Proceedings AusIMM 9th Mill Operators’ Conference, Fremantle, Australia. pp. 66–75.
  • Pita, F. A., 2015, “True flotation and entrainment of kaolinitic ore in batch tests.” Mineral Processing and Extractive Metallurgy Review, 36. pp. 213–222. doi:10.1080/08827508.2014.928619
  • Tasdemir, T., Tasdemir, A., and Oteyaka, B., 2011, “Gas entrainment rate and flow characterization in downcomer of a Jameson cell.” Physicochemical Problems of Mineral Processing, 47. pp. 61–78.
  • Turney, D. E., Kalaga, D. V., Ansari, M., Yakobov, R., and Joshi, J. B., 2018, “Reform of the drift-flux model of multiphase flow in pipes, wellbores, and reactor vessels.” Chemical Engineering Science, 184. pp. 251–258. doi:10.1016/j.ces.2018.03.033
  • Watcharasing, S., Kongkowit, W., and Chavadej, S., 2009, “Motor oil removal from water by continuous froth flotation using extended surfactant: effects of air bubble parameters and surfactant concentration.” Separation and Purification Technology, 70. pp. 179–189. doi:10.1016/j.seppur.2009.09.014
  • Yalcin, T., Byers, A., and Ughadpaga, K., 2002, “Dissolved gas method of generating bubbles for potential use in ore flotation.” Mineral Processing and Extractive Metallurgy Review, 23. pp. 181–197. doi:10.1080/08827500306894
  • Yang, X.-S., and Aldrich, C., 2006, “Effects of impeller speed and aeration rate on flotation performance of sulphide ore.” Transactions of Nonferrous Metals Society of China, 16. pp. 185–190. doi:10.1016/S1003-6326(06)60033-2
  • Yianatos, J. B., Finch, J. A., and Laplante, A. R., 1986, “Holdup profile and bubble size distribution of flotation column froths.” Canadian Metallurgical Quarterly, 25. pp. 23–29. doi:10.1179/cmq.1986.25.1.23
  • Yoon, R. H., and Luttrell, G. H., 1989, “The effect of bubble size on fine particle flotation.” Mineral Procesing and Extractive Metallurgy Review, 5. pp. 101–122. doi:10.1080/08827508908952646
  • Yoshida, F., and Akita, K., 1965, “Performance of gas bubble columns: volumetric liquid‐phase mass transfer coefficient and gas holdup.” AIChE Journal, 11. pp. 9–13. doi:10.1002/(ISSN)1547-5905

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.