623
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Selective Flotation of Copper Oxide Minerals with A Novel Amino-Triazole-Thione Surfactant: A Comparison to Hydroxamic Acid Collector

, , , &

References

  • Abramov, A. A., and Forssberg, K. S. E., 2005, “Chemistry and optimal conditions for copper minerals flotation: theory and practice.” Mineral Procesing and Extractive Metallurgy Review, 26(2). pp. 77–143. doi: 10.1080/08827500590883197.
  • Ahmed, N., and Jameson, G. J., 1989, “Flotation kinetics.” Mineral Procesing and Extractive Metallurgy Review, 5(1–4). pp. 77–99. doi: 10.1080/08827508908952645.
  • Alim, G., 2007, “The role of Na2S2O5 and activated carbon on the selective flotation of chalcopyrite from a copper ore using a dithiophosphine-type collector.” Mineral Processing and Extractive Metallurgy Review, 28(3). pp. 235–245. doi: 10.1080/08827500601141750.
  • Ananthapadmanabhan, K. P., and Somasundaran, P., 1985, “Surface precipitation of inorganics and surfactants and its role in adsorption and flotation.” Colloids and Surfaces, 13. pp. 151–167. doi: 10.1016/0166-6622(85)80014-7.
  • Bahrami, A., Ghorbani, Y., Hosseini, M. R., Kazemi, F., Abdollahi, M., and Danesh, A., 2018, “Combined Effect of Operating Parameters on Separation Efficiency and Kinetics of Copper Flotation.” Mining, Metallurgy and Exploration 1–13. doi:10.1007/s42461-018-0005-y.
  • Bakalarz, A., Gloy, G., and Luszczkiewicz, A., 2015, “Flotation of sulfide components of copper ore in the presence of n-dodecane.” Mineral Processing and Extractive Metallurgy Review, 36(2). pp. 103–111. doi: 10.1080/08827508.2014.898301.
  • Barbaro, M., Urbina, R. H., Cozza, C., Fuerstenau, D., and Marabini, A., 1997, “Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector.” International Journal of Mineral Processing, 50(4). pp. 275–287. doi: 10.1016/S0301-7516(97)00045-8.
  • Bartos, P. J., 2002, “SX-EW copper and the technology cycle.” Resources Policy, 28(3–4). pp. 85–94. doi: 10.1016/S0301-4207(03)00025-4.
  • Booth, R. B., Hartjens, H., and Falvey, J. J., 1971, “Di (4–5 carbon branched primary alkyl) dithiophosphate promoters for the flotation of copper middlings.” U.S. Patent 3570772.
  • Buckley, A., Denman, J., and Hope, G., 2012, “The adsorption of n-octanohydroxamate collector on Cu and Fe oxide minerals investigated by static secondary ion mass spectrometry.” Minerals, 2(4). pp. 493–515. doi: 10.3390/min2040493.
  • Bulatovic, S., 2010, “Flotation of oxide copper and copper cobalt ores.” Handbook of Flotation Reagents: Chemistry, Theory and Practice, 2. pp. 47–65.
  • Celik, I. B., Can, N. M., and Sherazadishvili, J., 2010, “Influence of process mineralogy on improving metallurgical performance of a flotation plant.” Mineral Processing and Extractive Metallurgy Review, 32(1). pp. 30–46. doi: 10.1080/08827508.2010.509678.
  • Chebabe, D., Dermaj, A., Erramli, H., and Hajjaji, N., 2014, “Corrosion inhibition of bronze alloy B66 by 4-amino-3-methyl-1, 2, 4-triazole-5-thione in 3 per cent NaCl solution.” Anti-Corrosion Methods and Materials, 61(5). pp. 281–286. doi: 10.1108/ACMM-05-2013-1265.
  • Chen, X., and Peng, Y., 2018, “Managing clay minerals in froth flotation—A critical review.” Mineral Processing and Extractive Metallurgy Review, 39(5). pp. 289–307. doi: 10.1080/08827508.2018.1433175.
  • Cheng, X., and Iwasaki, I., 1992, “Pulp potential and its implications to sulfide flotation.” Mineral Processing and Extractive Metullargy Review, 11(4). pp. 187–210. doi: 10.1080/08827509208914206.
  • Choi, J., Choi, S. Q., Park, K., Han, Y., and Kim, H., 2016, “Flotation behaviour of malachite in mono-and di-valent salt solutions using sodium oleate as a collector.” International Journal of Mineral Processing, 146. pp. 38–45. doi: 10.1016/j.minpro.2015.11.011.
  • Chufán, E. E., Pedregosa, J. C., and Borrás, J., 1997, “Spectroscopic behaviour of metal–drug complexes. Infrared spectra of Cu (II) complexes with 5-amino-1, 3, 4-thiadiazole-2-thiol (Hatm).” Vibrational Spectroscopy, 15(2). pp. 191–199. doi: 10.1016/S0924-2031(97)00033-7.
  • Clark, R. W., Squattrito, P. J., Sen, A. K., and Dubey, S. N., 1999, “Structural trends in a series of divalent transition metal triazole complexes.” Inorganica chimica acta, 293(1). pp. 61–69. doi: 10.1016/S0020-1693(99)00233-9.
  • Dandia, A., Gupta, S. L., Sudheer, and Quraishi, M. A., 2012, “Microwave assisted economic synthesis of 4-amino-3-alkyl-5-mercapto-1, 2, 4-triazole derivatives as green corrosion inhibitors for copper in hydrochloric acid.” Journal of Materials and Environmental Science, 3. pp. 993–1000.
  • Deng, T., and Chen, J., 1991, “Treatment of oxidized copper ores with emphasis on refractory ores.” Mineral Procesing and Extractive Metallurgy Review, 7(3–4). pp. 175–207. doi: 10.1080/08827509108952671.
  • Ecrola, P. I., and Paloaari, V., 1995, “Developments in selective flotation of complex copper-lead-zinc.” Mineral Processing and Extractive Metallurgy Review, 15(1–4). pp. 47. doi: 10.1080/08827509508936950.
  • Eldakar, N., and Nobe, K., 1977, “Electrochemical and corrosion behavior of iron in presence of substituted benzotriazoles.” Corrosion, 33(4). pp. 128–130. doi: 10.5006/0010-9312-33.4.128.
  • Farkas, E., Kozma, E., Petho, M., Herlihy, K. M., and Micera, G., 1998, “Equilibrium studies on copper (II)-and iron (III)-monohydroxamates.” Polyhedron, 17(19). pp. 3331–3342. doi: 10.1016/S0277-5387(98)00113-2.
  • Fuerstenau, M., Jameson, G., and Yoon, R., 2007, “Froth Flotation: A Century of Innovation.” Society for Mining, Metallurgy, and Exploration, Littleton, CO.
  • Gharai, M., and Venugopal, R., 2016, “Modeling of flotation process—an overview of different approaches.” Mineral Processing and Extractive Metallurgy Review, 37(2). 120–133.
  • Griffith, D. M., Szőcs, B., Keogh, T., Suponitsky, K. Y., Farkas, E., Buglyó, P., and Marmion, C. J., 2011, “Suberoylanilide hydroxamic acid, a potent histone deacetylase inhibitor; its X-ray crystal structure and solid state and solution studies of its Zn (II), Ni (II), Cu (II) and Fe (III) complexes.” Journal of Inorganic Biochemistry, 105(6). pp. 763–769. doi: 10.1016/j.jinorgbio.2011.03.003.
  • Hassanzadeh, A., and Hasanzadeh, M., 2017, “Chalcopyrite and pyrite floatabilities in the presence of sodium sulfide and sodium metabisulfite in a high pyritic copper complex ore.” Journal of Dispersion Science and Technology, 38(6). pp. 782–788. doi: 10.1080/01932691.2016.1194763.
  • Hassanzadeh, A., and Karakaş, F., 2017, “The kinetics modeling of chalcopyrite and pyrite, and the contribution of particle size and sodium metabisulfite to the flotation of copper complex ores.” Particulate Science and Technology, 35(4). pp. 455–461. doi: 10.1080/02726351.2016.1165323.
  • Hayes, R. A., Price, D. M., Ralston, J., and Smith, R. W., 1987, “Collectorless flotation of sulphide minerals.” Mineral Procesing and Extractive Metallurgy Review, 2(3). pp. 203–234. doi: 10.1080/08827508708952606.
  • He, Z., Liu, G., Yang, X., and Liu, W., 2016, “A novel surfactant, N, N-diethyl-N′-cyclohexylthiourea: synthesis, flotation and adsorption on chalcopyrite.” Journal of Industrial and Engineering Chemistry, 37. pp. 107–114. doi: 10.1016/j.jiec.2016.03.013.
  • Hipler, F., Fischer, R. A., and Müller, J., 2002, “Examining thermolysis reactions and tautomerism of 2-mercapto-5-methyl-1, 3, 4-thiadiazole and 2, 5-dimercapto-1, 3, 4-thiadiazole.” Journal of the Chemical Society, Perkin Transactions, 2(9). pp. 1620–1626. doi: 10.1039/B201887J.
  • Hope, G. A., Buckley, A. N., Parker, G. K., Numprasanthai, A., Woods, R., and Mclean, J., 2012a, “The interaction of n -octanohydroxamate with chrysocolla and oxide copper surfaces.” Minerals Engineering, 36. pp. 2–11. doi: 10.1016/j.mineng.2012.01.013.
  • Hope, G. A., Numprasanthai, A., Buckley, A. N., Parker, G. K., and Sheldon, G., 2012b, “Bench-scale flotation of chrysocolla with n-octanohydroxamate.” Minerals Engineering, 36. pp. 12–20. doi: 10.1016/j.mineng.2012.02.002.
  • Hope, G. A., Woods, R., Parker, G. K., Buckley, A. N., and McLean, J., 2010, “A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals.” Minerals Engineering, 23(11–13). pp. 952–959. doi: 10.1016/j.mineng.2010.03.012.
  • Kajdan, T. W., Squattrito, P. J., and Dubey, S. N., 2000, “Coordination geometries of bis (4-amino-3-ethyl-1, 2, 4-triazole-5-thione) complexes of Mn, Fe, Co, Ni, Cu and Zn: relationship to the 3-methyl analogs.” Inorganica Chimica Acta, 300. pp. 1082–1089. doi: 10.1016/S0020-1693(99)00534-4.
  • Katwika, C. N., Kime, M. B., Kalenga, P. N. M., Mbuya, B. I., and Mwilen, T. R., 2019, “Application of Knelson concentrator for beneficiation of copper–cobalt ore tailings.” Mineral Processing and Extractive Metallurgy Review 40 (1): 35–45. doi:10.1080/08827508.2018.1481057.
  • Kordosky, G. A., 2002, “Copper recovery using leach/solvent extraction/electrowinning technology: forty years of innovation, 2.2 million tonnes of copper annually.” Journal of the Southern African Institute of Mining and Metallurgy, 102(8). 445–450.
  • Lee, J. S., Nagaraj, D. R., and Coe, J. E., 1998, “Practical aspects of oxide copper recovery with alkyl hydroxamates.” Minerals Engineering, 11(10). pp. 929–939. doi: 10.1016/S0892-6875(98)00080-6.
  • Lee, K., Archibald, D., McLean, J., and Reuter, M. A., 2009, “Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors.” Minerals Engineering, 22(4). pp. 395–401. doi: 10.1016/j.mineng.2008.11.005.
  • Li, F., Zhong, H., Xu, H., Jia, H., and Liu, G., 2015, “Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite.” Minerals Engineering, 71. pp. 188–193. doi: 10.1016/j.mineng.2014.11.013.
  • Liu, C., Ai, G., and Song, S., 2018a, “The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite.” Powder Technology, 336. pp. 527–532. doi: 10.1016/j.powtec.2018.06.030.
  • Liu, C., Lu, G., Jiang, L., Jiang, L., and Zhou, X., 2006, “Study on the electrochemical behavior of dopamine and uric acid at a 2-amino5-mercapto-[1, 3, 4] triazole self-assembled monolayers electrode.” Electroanalysis: an International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18(3). pp. 291–297. doi: 10.1002/(ISSN)1521-4109.
  • Liu, G., Huang, Y., Qu, X., Xiao, J., Yang, X., and Xu, Z., 2016a, “Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 503. pp. 34–42. doi: 10.1016/j.colsurfa.2016.05.028.
  • Liu, G., Liu, J., Huang, Y., Yang, X., and Zhong, H., 2018b, “New advances in the understanding and development of flotation collectors: A Chinese experience.” Minerals Engineering, 118. pp. 78–86. doi: 10.1016/j.mineng.2018.01.009.
  • Liu, G., Xiao, J., Liu, J., Qu, X., Liu, Q., Zeng, H., and Xu, Z., 2016b, “In situ probing the self-assembly of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione on chalcopyrite surfaces.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 511. pp. 285–293. doi: 10.1016/j.colsurfa.2016.10.017.
  • Liu, G., Yang, X., and Zhong, H., 2017, “Molecular design of flotation collectors: A recent progress.” Advances in Colloid and Interface Science, 246. pp. 181–195. doi: 10.1016/j.cis.2017.05.008.
  • Liu, G., Zeng, H., Lu, Q., Zhong, H., Choi, P., and Xu, Z., 2012, “Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure–reactivity relations.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 409. pp. 1–9. doi: 10.1016/j.colsurfa.2012.04.036.
  • Liu, G., Zhang, H., Zhong, H., Liu, S., Zhao, G., and Xiao, J., 2015, “Preparation method of hydroxamic acid or hydroxamic acid salt.” China patent CN 103922968B.
  • Liu, S., Zhong, H., Liu, G., and Xu, Z., 2018c, “Cu (I)/Cu (II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N, N-dibutyldithiocarbamate: hydrophobic mechanism to malachite flotation.” Journal of Colloid and Interface Science, 512. pp. 701–712. doi: 10.1016/j.jcis.2017.10.063.
  • Marion, C., Jordens, A., Li, R., Rudolph, M., and Waters, K. E., 2017, “An evaluation of hydroxamate collectors for malachite flotation.” Separation and Purification Technology, 183. pp. 258–269. doi: 10.1016/j.seppur.2017.02.056.
  • Nagaraj, D. R., and Farinato, R. S., 2016, “Evolution of flotation chemistry and chemicals: a century of innovations and the lingering challenges.” Minerals Engineering, 96. pp. 2–14. doi: 10.1016/j.mineng.2016.06.019.
  • Nath, M., Song, X., Eng, G., and Kumar, A., 2008, “Synthesis and spectral studies of organotin (IV) 4-amino-3-alkyl-1, 2, 4-triazole-5-thionates: in vitro antimicrobial activity.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(4). pp. 766–774. doi: 10.1016/j.saa.2007.09.009.
  • Park, K., Park, S., Choi, J., Kim, G., Tong, M., and Kim, H., 2016, “Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector.” Separation and Purification Technology, 168. pp. 1–7. doi: 10.1016/j.seppur.2016.04.053.
  • Pearson, R. G., 1963, “Hard and soft acids and bases.” Journal of the American Chemical Society, 85(22). pp. 3533–3539. doi: 10.1021/ja00905a001.
  • Peterson, H. D., Fuerstenau, M. C., Rickard, R. S., and Miller, J. D., 1965, “Chrysocolla flotation by the formation of insoluble surface chelates.” Trans. Am. Inst. Min. Eng, 232. pp. 388–392.
  • Qu, X., Xiao, J., Liu, G., Liu, S., and Zhang, Z., 2016, “Investigation on the flotation behavior and adsorption mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to chalcopyrite.” Minerals Engineering, 89. pp. 10–17. doi: 10.1016/j.mineng.2015.12.015.
  • Quraishi, M. A., Ansari, F. A., and Jamal, D., 2002, “Azathiones: novel class of corrosion inhibitors for mild steel in formic acid.” Bulletin of Electrochemistry, 18(7). 327–332.
  • Raghavan, S., Adamec, E., and Lee, L., 1984, “Sulfidization and flotation of chrysocolla and brochantite.” International Journal of Mineral Processing, 12(1–3). pp. 173–191. doi: 10.1016/0301-7516(84)90028-0.
  • Rai, B., Rao, T. K., Krishnamurthy, S., Vetrivel, R., Mielczarski, J., and Cases, J. M., 2002, “Molecular modeling of interactions of alkyl hydroxamates with calcium minerals.” Journal of Colloid and Interface Science, 256(1). pp. 106–113. doi: 10.1006/jcis.2001.7994.
  • Rao, S. R., and Finch, J. A., 2003, “Base metal oxide flotation using long chain xanthates.” International Journal of Mineral Processing, 69(1–4). pp. 251–258. doi: 10.1016/S0301-7516(02)00130-8.
  • Schulze, H. J., 1989, “Hydrodynamics of bubble-mineral particle collisions.” Mineral Procesing and Extractive Metallurgy Review, 5(1–4). pp. 43–76. doi: 10.1080/08827508908952644.
  • Smičius, R., Burbuliene, M. M., Jakubkienė, V., Udrwėnaitė, E., and Vainilavičius, P., 2007, “Convenient way to 5-substituted 4-amino-2, 3-dihydro-4H-1, 2, 4-triazole-3-thiones.” Journal of Heterocyclic Chemistry, 44(2). pp. 279–284. doi: 10.1002/jhet.v44:2.
  • Sreenivas, T., and Manohar, C., 2000, “Adsorption of octyl hydroxamic acid/salt on cassiterite.” Mineral Processing and Extractive Metallurgy Review, 20(1). pp. 503–519. doi: 10.1080/08827500008547441.
  • Wang, X. H., and Xie, Y., 1990, “The effect of grinding media and environment on the surface properties and flotation behaviour of sulfide minerals.” Mineral Procesing and Extractive Metallurgy Review, 7(1). pp. 49–79. doi: 10.1080/08827509008952666.
  • Wu, D., Ma, W., Mao, Y., Deng, J., and Wen, S., 2017, “Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator.” Scientific Reports, 7(2086). pp. 1–9. doi: 10.1038/s41598-016-0028-x.
  • Yekeler, H., and Yekeler, M., 2006a, “Predicting the efficiencies of 2-mercaptobenzothiazole collectors used as chelating agents in flotation processes: a density-functional study.” Journal of Molecular Modeling, 12(6). pp. 763–768. doi: 10.1007/s00894-005-0092-9.
  • Yekeler, M., and Yekeler, H., 2006b, “A density functional study on the efficiencies of 2-mercaptobenzoxazole and its derivatives as chelating agents in flotation processes.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286(1–3). pp. 121–125. doi: 10.1016/j.colsurfa.2006.03.012.
  • Yi, L., Zhu, L. N., Ding, B., Cheng, P., Liao, D. Z., Zhai, Y. P., and Jiang, Z. H., 2004, “Synthesis, structures and properties of two novel copper (II) complexes with hydrogen bonding supramolecular networks.” Transition Metal Chemistry, 29(2). pp. 200–204. doi: 10.1023/B:TMCH.0000019421.92951.b2.
  • Yoshida, T., Yamasaki, K., and Sawada, S., 1979, “An X-ray photoelectron spectroscopic study of 2-mercaptobenzothiazole metal complexes.” Bulletin of the Chemical Society of Japan, 52(10). pp. 2908–2912. doi: 10.1246/bcsj.52.2908.
  • Zhang, W., Honaker, R. Q., and Groppo, J. G., 2017, “Flotation of monazite in the presence of calcite part I: calcium ion effects on the adsorption of hydroxamic acid.” Minerals Engineering, 100. pp. 40–48. doi: 10.1016/j.mineng.2016.09.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.